Architecture – Case Studies

Building Robustness on More than a Shoestring (but less than a goldmine)

Frank Lauritzen, Environment Canada

Introduction: Who we are and what we do

Environment Canada’s Scientific Data Stewardship Division has a mandate to facilitate the preservation of its scientific data for all time. A simple example of this is the archiving of historical weather observations. The data available at http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html taps into a small portion of this data.

The focus of our primary database is a keep forever archive with all data available online all the time. Although we can actually afford to be offline for extended periods of time, we don’t believe that we have to. It is critical, however, that we do not lose any data. Data generated today must be available for future generations to analyze as they grapple with their environmental issues.

In the 1970s this data was kept on magnetic tapes and accessed through an IBM mainframe. In the 1980s it was moved into a Model 204 database and accessed directly on disk. During the 1990s our infrastructure was moved to Unix and ORACLE.

Our original V7 ORACLE database was housed on a pair of HP 755 workstations with a large array of 2.9 and 9.0 Gbyte disk drives. There was also an attempt to utilize an optical disk array to house this, (at the time), massive 500 GByte database. The database was eventually moved to a 4 CPU SGI Unix server with a (relatively) large disk farm behind it.

Today the database is over 8 TBytes and grows by several TBytes per year. It exists on low-end SAN storage connected to 2 Dell 2650 servers running ORACLE Linux with ORACLE 10.2.0.3 RAC and ASM.

The evolution of our infrastructure has, for the most part, been carried out through opportunistic funding, as it were. That is to say, while attempts are made to life-cycle manage our hardware and to engage in systematic capital replacements, the truth is that there is no bottom line to reference in order to justify improvements in our infrastructure. It is difficult to quantify how eliminating a certain weakness in our configuration will translate into resource savings. Couple this with that odd government scenario in which money will suddenly appear that needs to be spent on worthwhile projects, and the need to depend on carefully presented and approved upgrade justifications is lessened.

The system in which we work is by no means bankrupt. We operate on “more than a shoestring”. But we also do not have the availability of “gold in the ground”, a “we will make more money if …” statement we can use to justify our next infrastructure change. Our system architecture is more evolution that revolution.

What is robustness?

Looking up robustness at www.dictionary.com we find:

From the Latin: rōbustus oaken, hard, strong

Using Goggle’s define function we discover a few different meanings for robustness:

The degree to which a system or component can still function in the presence of partial failures or other adverse, invalid, or abnormal conditions.
www.stsc.hill.af.mil/crosstalk/1994/07/xt94d07l.asp

· Dependability of a system, product, or process to continue operating well even though conditions are constantly changing.
schools.cbe.ab.ca/logistics/r.html

For the moment, our group continues to operate without 24x7 coverage. Support for our current databases is not deemed mission-critical. As such, next business day coverage is sufficient. This does, however, motivate us to build as hardened a system as possible to withstand most failures. This has caused us to define robustness as “the quest for no single point-of-failure”.

In reality we all know that there is always a single point-of-failure. It is just a matter of scope. The destruction of the galaxy remains something from which my database is not protected. In fact, this line is crossed much closer to home. Being able to itemize these singularities and to address them as we move forward is our attempt to build robustness.

The High Availability group at ORACLE publishes an excellent set of papers entitled Oracle Maximum Availability Architecture – MAA available at http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm, which detail the same objective that I have:

“The goal of MAA is to achieve the optimal high availability architecture at the lowest cost and complexity.”

This paper could just as easily have been subtitled “Winding our Way to MAA”. Instead of using the MAA architecture as a blueprint we found ourselves slowly adding to our infrastructure pieces that, in the end, are taking us to the same place. When we stopped and compared ourselves to MAA we were happy to find that we were “doing it right”. On the other hand there were some bumps in the road that need to be shared.

Hardware components

Storage

“The database exists on disk and the instance in memory”; those words are drilled into my head from one of my first ORACLE DBA classes back in the mid 1990s. Our disks are currently housed in a relatively inexpensive SAN unit configured with disks of varying performance characteristics. This gives us the flexibility to put our high performance files on 15K SAS drives (RAID 1 or 10), our medium performance (active) files on 10K SAS drives (RAID 5) and our may-never-be-accessed-again-but-you-never-know files on lower performing 10K SATA drives. RAID provides for single disk failure protection. We plan to go to RAID 6 with our next upgrade.

Our SAN unit is configured with two cross-connected controllers on two fabrics, all for redundancy and to eliminate the single point-of-failure.

Our original SAN system was space on an existing EMC Clarion box for which we purchased some extra disk. We subsequently moved away from this when ORACLE introduced ASM, an ORACLE-intelligent logical volume manager (LVM) that provides many of the features that you have to pay for again in the EMC product. ASM makes JBODs (Just a Bunch Of Disks) a viable alternative since the out-front price per TeraByte of an EMC (or any other high end SAN system) is three times that of a lower-end SAN system. In light of some our our SAN difficulties we are rethinking this decision.

San switches

Is redundancy needed here? Then two switches and two fabrics is the way to go. The failure of one controller or one fiber switch will not cause data to become inaccessible.

Servers

The recipe could be said to be : take two identical servers and add two additional NICs to each for an interconnect. Mix it up until smooth and, wow, you have a cluster.

It took us 9 months to get our initial RAC cluster up and operating and it was a painful experience. Special thanks need to go to the RACpack for their help. We were early adopters, and that was long ago when RAC installations were much less common.

Under regular load we can keep up with our incoming data loads and queries with a single server. If we have had prolonged downtime or an interruption in regular dataflow then it is difficult for that single server to catch up. This means that if there is a server problem over the weekend then we can survive to the next business day on the remaining server. RAC gives us the automatic protection we desire from a single server breakdown.

RAC Interconnects

Let’s not forget to configure two of these. It’s unlikely, but they can fail! We run with two Gigabit Ethernet connections through two separate private switches.

Public Network Connects

We haven’t gone here. We just have one and have acknowledged this vulnerability. Our primary concern is to not lose any data. Losing access to it for a short period of time can be tolerated. In 15 years we’ve never lost our network connection for any significant amount of time.

Power

In an ideal situation all of the equipment is connected to two independent power feeds through two independent power distribution units (PDUs), both capable of handling the entire load on their own. UPS power on at least one side also helps ensure no downtime due to power problems. Be aware that properly done, this does not come cheap.

Software components

ASM

Our journey to ASM took us through OCFS and OCFS2 first. They all work but ASM is just better. RAC requires a shared file system and these options give us the redundancy we are looking for.

ASM gives us the ability to define failure groups that effectively ensure that each block is written on two independent disks (when configured correctly). If one disk fails then it uses the other copy. This is ASM’s version of RAID 1 hardware mirroring. At the moment we define all of our ASM disks with “external redundancy” and not with fail groups, since we are not willing to absorb the expense of complete mirroring and accept the performance hit of RAID 5.

I had a brief conversation with a database architect and a Linux architect from a large company. The database architect was trying to convince the Linux architect that they should go to ASM, but without success. This scenario is not unusual. It seems to have something to do with the fact that logical volume managers (LVMs) have always been in the domain of the system administrators (sysadmins) and they’re uncomfortable with any part of this shifting to the database administrator (DBA). In our organization the sysadmin is responsible for everything, up to and including initializing the ASM disk. The DBAs request the space and define its characteristics and then utilize it as they see fit.

RAC

Real Application Clusters is the cornerstone of our quest for no single-point-of-failure. I remember sitting in my ORACLE RAC class having configured and started my cluster. The exercise had us start a query on server A and, while it was listing the results to the screen, kill that server. The listing paused and then continued to its conclusion. Afterwards we queried what server our session was connected to and lo and behold it was server B. I’ll never forget thinking “Wow! It actually works!”

RAC is the way to go to have redundancy,and hence robustness, at the server level – two or more memory spaces cooperating together until one fails and the others pick up the workload.

Balancing the workload and achieving the required performance is beyond the scope of this paper and will not be covered here.

Listener Definitions

It’s a bit embarassing, but it has taken us years to finally get our listener definitions to where they should be. We didn’t have our remote listeners defined correctly. We didn’t understand Virtual IPs (VIPs) and we didn’t get all the nuances for failover (client-side/server-side). We weren’t always using a client that supported it (JDBC thin). We are also using the ORACLE Names portion of ORACLE Internet Directory (OID) to serve up these definitions, and had initial trouble entering the options we wanted into OID. We were not where we wanted to be, but we think we’re closer now. Metalink note 226880.1 is an invaluable reference for defining listener configurations

Here is an example of our current service definition:

ARKEON =

 (DESCRIPTION =

 (LOAD_BALANCE=YES)

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)

 (HOST = ecodb52-vip.ontario.int.ec.gc.ca)(PORT = 1521))

 (ADDRESS = (PROTOCOL = TCP)

 (HOST = ecodb53-vip.ontario.int.ec.gc.ca)(PORT = 1521))

)

 (CONNECT_DATA =

 (SERVICE_NAME = ARKEON.TOR.EC.GC.CA)

 (FAILOVER_MODE =

 (TYPE = SELECT)

 (METHOD = BASIC)

 (BACKUP = ARKEON)

)

)

)

Recovery (and backups if you really need them)

Backups are not important; recovering your data is. If one can recover without a backup then a backup is not necessary.

RAID technology provides us a second copy of our datafiles within our primary storage system, but to protect against a complete SAN failure (the SAN storage unit being the single point-of-failure), we need a copy elsewhere. Traditionally this was kept on tape.

In my life before ORACLE, I was an MVS systems programmer. One of my responsibilities was for the tape management system on our mainframe and as such, I worked closely with the tape librarians. One of the impressions it left was the true cost of using tapes. There are lots of studies that show that the cost is higher than we might want to admit. In actuality, we have made the conscious decision to have no tape backups.

We have implemented a recovery solution based on Enterprise Managers suggested backup system and as outlined in the ORACLE’s Database Backup and Recovery Basics manual (Chapter 4 Incrementally Updated Backups: Rolling Forward Image Copy Backups). In short we have opted to keep a very recent image copy of the database on disk and update it daily by applying incremental backups to it. This copy is kept in our FRA diskgroup on a completely different SAN unit. How does this help us? We can lose all our primary storage and be able to switch to our FRA copy and then recover it. The following RMAN commands were run to accomplish this:

RUN

{

 Recover copy of database with tag 'fra_lcopy_1';

 Backup incremental level 1 for recover of copy with tag 'fra_lcopy_1'

 database filesperset 1;

}

Of course we are using RMAN. It is not only a good product but it’s the only thing that could read ASM files.

We actually thought this a reasonable architecture until we suffered a dreaded double point-of-failure. That’s right, we had two disks fail in a single RAID 5 set,Meaning that we lost 1.5 TBytes all at once. The plan was to switch to the copies in our FRA, but when it came right down to it it was hard to do. We could not overcome the fear of corrupting the data since it was the single remaining copy. We ended up restoring first, adding many hours to the recovery time. As has been stated, we can afford the downtime. It obviously isn’t ideal when it happens, but our primary responsibility is to ensure that data isn’t lost.

In response, we concluded that we really needed a third copy of the database as a fallback so we wouldn’t be afraid to simply switch to the second copy. Now we could take a conventional backup for this or we could backup the FRA but again, we chose to employ the same Incrementally Updated Backups methodology as we do for the FRA copy. We created another diskgroup on a physically separate SAN called +BACKUP_S01 and ran the following to create the initial image with a different tag (lcopy_2) than the tag for primary image copy in the FRA (fra_lcopy_1):

RUN

{

 Allocate channel ch2 device type disk format ‘+BACKUP_S01’;

 Backup incremental level 1 for recover of copy with tag 'lcopy_2'

 database filesperset 1;

}

Manually allocating the channel points the image copy to our new diskgroup.

Issuing a “recover copy of database with tag = lcopy_2” command should now be able to utilize the backupset created for primary FRA copy to roll forward the copy on BACKUP_S01. This works fine until a new datafile is introduced to the database. Since we aren’t running a second ‘backup incremental level 1’ command for the new copy, there is nothing that will detect this new datafile. So we generate a script to locate and backup each of these new files using the following SQL:

set termout off

set pagesize 0

set header off

spool backup_new_lcopy_2_directives.rman

select line

from (

 select 1 num,

 'RUN { ALLOCATE CHANNEL ch2 DEVICE TYPE DISK FORMAT ''+BACKUP_S03'';' line

 from dual

 union all

 select 2+rownum num,

 'BACKUP INCREMENTAL LEVEL 1 ' ||

 'FOR RECOVER OF COPY WITH TAG ''lcopy_2'' DATAFILE ' ||

 df_file# || ';' line

 from (

 select df_file# from v$backup_files

 where backup_type = 'COPY'

 and status = 'AVAILABLE'

 and tag in ('FRA_LCOPY_1')

 and obsolete = 'NO'

 minus

 select df_file# from v$backup_files

 where backup_type = 'COPY'

 and status = 'AVAILABLE'

 and tag in ('LCOPY_2')

 order by df_file#

)

 union all

 select 999999999 num, ' }' line from dual

)

order by num

;

spool off

The following script runs nightly to keep both image copies up to date:

RUN

{

 Recover copy of database with tag 'fra_lcopy_1';

 Backup incremental level 1 for recover of copy with tag 'fra_lcopy_1'

 database filesperset 1;

}

host "sqlplus / as sysdba @gen_lcopy_2_directives.sql";

host "cat backup_new_lcopy_2_directives.rman";

@backup_new_lcopy_2_directives.rman

Recover copy of database with tag = lcopy_2 until time 'sysdate-7';

Note that we keep the lcopy_2 copy a week behind (until ‘sysdate-7’) to facilitate point-in-time recovery if ever we need it.

Standby Databases

It’s useful to now take a step backward and define what my single point-of-failure is with respect to storage. We have our primary copy on a SAN unit protected by RAID disks and two copies on different SAN units all protected by RAID disks. Sounds reasonable until we note that they all exist not only in the same computer room but also in the same physical rack. My single point-of-failure comes down to that single SAN rack.

MAA dictates that the next step is to use a standby database in a remote location. Since we have another computing centre and a good network between them the only thing holding us back is the cost of licensing, the financial aspect of which is very much beyond the scope of this paper. Rest assured we will be moving in that direction. It is the correct choice for addressing the geographical single point-of-failure issue. It should also reduce our need for having a third copy on storage locally.

Tales from the Trenches

“Battery backup of all power systems ensures that all data in memory is safely written to disk before Symmetrix initiates an orderly shutdown in the event of complete power loss.”

http://canada.emc.com/collateral/hardware/data-sheet/c1005-dmx-series-ds.pdf
Our early experiences on our EMC made me very comfortable with the use of write caching as a performance enhancer. When we moved to our less expensive SAN storage units I never thought to rethink this.

In August 2007, major work was being done in our building on our power systems. There was a planned shutdown for an entire weekend. Mission-critical systems would be kept powered with portable generators but our system was not one of them. On Friday evening we powered everything off. It was Monday before we found out that, due to a procedural error, our SAN storage did not flush its write cache to disk before shutting down. Shouldn’t be a problem given its battery backup, however. Unfortunately, these less expensive SANs do not attempt to write to disk on power loss like the EMC does. They just continue to power the cache so that nothing is lost. Consequently, the resulting power requirement is much less, so much so that a very small battery can power it. In this case, so small that it runs out after about 48 hours. Yet in our case, our downtime was about 60 hours.

Database startup was an ORA-00600 nightmare. From ORACLE’s point of view, blocks that it believed to have been successfully written to disk were suddenly previous versions when read. It took us a while to figure out what had happened but gradually tablespaces were repaired through a variety of index rebuilds, point-in-time recoveries and table copies that bypassed corrupt blocks.

Because we are not mission-critical or on 24x7 standby and because no active monitoring is performed on weekends, we are susceptible to long power outages. We have therefore disabled the write cache in our SAN units and decided to tolerate the performance hit.

As mentioned previously, in November 2007 we experienced a double point-of-failure when two disk drives in one RAID set failed together (well technically the second failure occurred before the rebuild from the first failure completed). Our recovery plan was successful (restore and recover) but it took longer than it should have. So, we introduced our third level image copy,enabling the much quicker switch and recover. The SAN shelf housing the RAID set was completely replaced.

In January 2008 it happened again. The same RAID set exhibited signs of lost blocks following a simple disk rebuild with lots of ORA-00600s yet again. This time we switched to our FRA copy within hours and all went well, or at least we thought it had.

During the night our regular evening backup had run. Unknown to us, this incremental backup contained old blocks. When we issued the recover command for the switched tablespaces it copied the blocks back into the FRA copies, effectively re-corrupting them. We were able to easily identify those tablespaces affected and restored them from our third image and then recovered again. We also deleted the incremental backup.

We still had a few tablespaces that refused to recover, failing on ORACLE errors that reflected missing blocks in the redo stream. We are most grateful for the support from ORACLE Development in helping us to identify this fact. Presented with this information our storage vendor was quick to declare our storage unit a disaster and is currently replacing the entire unit with its modern equivalent.

Review

This paper has attempted to explain our methodology of delineating the scope of single points-of-failure in order to define the next logical steps to take to increase the robustness of our system. Our goal continues to be to build a solid infrastructure for our database, one the can tolerate failures in a manner that provides continuous service to our clients with no manual intervention required.

We’re not done yet!

1

 Paper 117

