Architecture

A New Database from Oracle: TimesTen
David Tipple, Statistics Canada
Introduction
TimesTen is an In-Memory Database that was released by Oracle in 2006. Its release followed Oracle’s acquisition of TimesTen in that same year.
TimesTen is a multi-user, relational database. Its query language is SQL. It runs on a large number of operating systems including Windows, AIX, HP-UX, Solaris, and Linux.
It is very fast access time that makes TimesTen unique. I will explain below the reasons for this fast response time in the section Why Microsecond Response Time?.

Typical uses

Oracle’s flagship product is of course Oracle database. It would be a fair question to ask why Oracle would release another database product. The answer is that TimesTen is well-suited to different solutions than is Oracle database. Some typical uses are as follows:
· Embedded applications
These applications are bundled with TimesTen, but TimesTen is transparent to the end user. The database is fully integrated with the application.

· Performance applications
These can be any application that stores its data in a database. Midrange servers are available with nearly 1 terabyte of memory and larger computers with over 100 terabytes. Memory is continuously decreasing in cost making large, TimesTen databases cost-effective relative to high performance disk-based systems.
· Database cache
This architecture relocates frequently-accessed data from the Oracle database to the TimesTen in-memory database. TimesTen is best located on the application server, but it can reside on any network server. In the former case, the benefit is increased application performance by eliminating network and disk latency. A secondary benefit is that the workload on the backend database is reduced and so it can respond faster to other queries.
Note: Using TimesTen as an Oracle database cache may require acquiring the Cache Connect to Oracle option to get the benefit of automatic synchronization of the two databases.

Comparison with Oracle database

Similarities

I hinted above at some similarities between TimesTen and Oracle database. These are as follows:

· Relational data model

· SQL retrieval language

· Multi-user access

· Row and table locks
· Read consistency

· Replication

Differences

More interesting are the differences between TimesTen and Oracle database. Some of these differences are as follows:

· Memory residency
TimesTen always resides totally in memory while Oracle database resides mostly on disk. Even data kept in the Oracle database buffer pool takes more time to access than data in TimesTen. This is because the buffer pool caches disk data blocks, not rows like in TimesTen. So if Oracle database determines that the required block is in the buffer pool, it must still locate the block and then use the block header to locate the row within the block. Since TimesTen already stores rows in data structures optimized for memory, it does not need a buffer pool.
· Response time volatility
Response time for TimesTen is constant because the access time to any memory address is constant. Response time for an Oracle database can be volatile because there are many variables that could intervene, such as disk latency, block size, row chaining, and many others.
· Implementation tier
TimesTen can be installed on either the application tier or the database tier, although it performs best on the application tier where there is no network or interprocess communication latency. Oracle database is always installed on the database tier where network and interprocess latency add to response time.
· Database size
TimesTen is limited in size to the amount of physical memory on the server, less memory required for the operating system, the application, and the TimesTen kernel. The maximum size of Oracle database is practically unlimited since disk storage systems can be expanded to extremely large sizes.

· Indexing options
TimesTen has only two types of indexes: hash for exact matches and T_tree for range matches. Oracle database has B-tree, bitmap, function, domain, and partitioned indexes which provide solutions to a wider range of business requirements.
· Logging
TimesTen can log database changes either synchronously or asynchronously depending on the application’s priority: transaction speed or database integrity. Oracle database always writes to the redo logs synchronously for total protection of database integrity but at the cost of increased time to commit a transaction.

Note: The current version of TimesTen allows logging to be disabled completely. However, the next version to be released in 2008 will require logging, either synchronous or asynchronous. This strategy will improve database integrity in case of a system crash and also will allow uncommitted transactions to be rolled back.
· Optimizer strategy
The TimesTen query optimizer assumes that the required data is in memory and so it creates an access path that is short and simple. The Oracle database optimizer assumes the data is on disk. Therefore, it creates an access path based on many variables, such as block size, multiblock reads, indexes, cardinality, and so on. With so many variables to consider, the probability is higher that the optimizer could choose an access path that is less than optimal.
Another benefit of TimesTen’s simpler design is that there is less database and query tuning to do. Therefore administration effort is lower than with Oracle database.

· Backup strategy
Oracle database is backed up using the RMAN utility. TimesTen is backed up from the operating system using a combination of the database files, checkpoint files, and transaction logs. These files are described below in the section Database Architecture.
Oracle database features missing from TimesTen

The following are some features of Oracle database that are not available in TimesTen:

· Oracle Text
Oracle Text is a powerful search tool for Oracle databases. It is not available in TimesTen. If you need to use Oracle Text, consider using TimesTen as an Oracle database cache and run Oracle Text queries on the Oracle database.
· Partitioning
This powerful data management option is not available in TimesTen. If you write your own programs to emulate partitioning functionality, at least they will execute very fast.

· Stored procedures and triggers
The current release of TimesTen has no database stored procedures capability. However, I have been told that this will be available with the next release in late 2008.

Why microsecond response time?

TimesTen’s strongest feature is its fast response time, both for reads and updates. For example, a read may take 15 microseconds and an update 30 microseconds. The following are the reasons for TimesTen’s fast response time:
· No network latency
When TimesTen is installed on the application server, network latency is eliminated. Network latency is the time required for the network to transport the query request from the application server to the database server and then the reverse for the result set.

Note: It is possible to install TimesTen on a database server. In this case, the application incurs network latency between the application server and the database server. This architecture will be discussed later in this paper.
· No disk latency
TimesTen incurs no disk access for read operations, only memory access. Even the fastest disk is tremendously slower than memory because of the time required for the platter to rotate through 360 degrees and then for the head to locate the track. A compounding factor is that disk reads must be processed sequentially. High-end SANs mitigate disk latency by implementing large disk caches. However, such caches are limited in size by the law of diminishing returns; at some point, it is more efficient to get the data from the disk.
· No interprocess communication (IPC)
The application can access the database directly without passing messages between processes when the application is linked with TimesTen. (This architecture is discussed later in this paper in the section titled Application Architectures.)

Note: If the application is not linked with TimesTen, the application incurs IPC delays.

· Fewer CPU cycles
TimesTen data storage structures are optimized for memory access. Therefore data access paths are simple and so require fewer CPU cycles to access the data.

· Low overhead
All TimesTen data is memory-resident and memory-optimized. Therefore there is no need to create and manage extra subsystems and structures, such as the buffer pool in Oracle database. The server’s CPU works on the data itself rather than structures that manage the data as well as the data.

Database architecture
The following Figure 1 shows the principle components of a TimesTen database.

[image: image25.bmp]
Figure 1: TimesTen major components

The unique components of a TimesTen database are as follows:

· Database file
This is the file copy of the TimesTen database when it was last started. It is used to start the database and also as the first step in recovering a database after a system crash.
· Transaction log buffer
Contains the old and new transaction values until they are written to the transaction log. This information is used to undo an uncommitted transaction.
The application has two options for writing the transaction log buffer to disk:

1. Synchronously with the commit – this increases transaction time but provides better transaction recovery in case of a system crash

2. Asynchronously at a later time – this reduces transaction time but increases the risk of losing transactions in case of a system crash. The buffer is written to disk when it gets full.

· Transaction log
Record of changes made to the database. It is deleted after a checkpoint has been completed. The transaction log is used to redo transactions following recovery of the database after a system failure.
· Checkpoint
Process that occasionally makes a record of changes made to the database since the last checkpoint.

A checkpoint can be either of two types:

1. Nonblocking (default)

Transactions continue while the checkpoint is running but the data in the checkpoint may not be transactionally consistent. If a database recovery is needed, the transaction log file will be required to make the checkpoint transactionally consistent.

2. Blocking

Transactions are queued while the checkpoint is running resulting in a transactionally consistent checkpoint. Database recovery will be faster because the checkpoint is always in a transactionally consistent state.

· Checkpoint file
Permanent copy of changes made to the database. The checkpoint file is used to recover the database in case of system failure. TimesTen keeps two checkpoint files in case of a system crash during the checkpoint operation.
Note: The above diagram is just one TimesTen architecture. There are alternative architectures that I will explain in the next section titled Application Architectures. The above discussion was to illustrate some TimesTen database structures and processes.
Application architectures
This section shows four different architectures for connecting an application to the TimesTen database.

Direct linked

The following Figure 2 shows a direct linked application.

[image: image2]
Figure 2: Direct linked application

The direct linked application architecture has the application code linked with the TimesTen libraries to form a single executable. The application must be written in Java, C, or C++. (I have heard that OCI, Oracle Call Interface, will be added in the 2008 release of TimesTen.) The application calls TimesTen as an internal procedure. Then the TimesTen procedure accesses the database.

This is efficient because it eliminates both network latency and interprocess communication between the application and the database.

Client server
The following Figure 3 shows a client server application with a TimesTen database.

[image: image3]
Figure 3: Client server application

The application runs on the client computer. It connects over the network to a child process on the database server. The child process then communicates with the TimesTen database.

The client server application is less efficient because all queries and result sets must travel over the network and also interprocess communication is required on the database server. Both these will increase the application response time.
Driver manager to local server

The following Figure 4 shows an application connected through a driver manager to TimesTen on the same server.

[image: image4]
Figure 4: Driver manager to local server

The application is linked with the ODBC or JDBC driver. The driver then loads the TimesTen database into the application’s memory. Then the database is accessed directly by ODBC.
This is an efficient architecture because it avoids both interprocess communication and network latency between the application and the database. It is useful when the application is written to operate independently of the database.
Driver manager to remote server

The following Figure 5 shows an application connected through a driver manager to TimesTen on a remote server.

[image: image5]
Figure 5: Driver manager to remote server

This application is linked with the ODBC or JDBC driver. The driver then establishes a network connection to the TimesTen database through a child process.
This is less efficient because all queries and result sets must travel over the network. Also the client must connect to a child process on the database server. Both these will increase the application response time.

It has the advantage of connecting the application to more than one database. It is also useful when the application is written to operate independently of the database.
Database configurations

This section describes some of many possible database configurations in different business situations. Each configuration could use one or more of the basic architectures described in the previous section.
Stand alone database

The following Figure 6 shows TimesTen functioning as a stand alone database.

[image: image6]
Figure 6: Stand alone database

As mentioned above, TimesTen is a fully functional database. This configuration may be chosen when the data volume fits into the application server’s memory and also fast response time is needed.
Database read cache

The following Figure 7 shows TimesTen as a read-only cache for an Oracle database.

[image: image7]
Figure 7: Read cache

The application user reads data from TimesTen for fast response. Any data that has been cached but not loaded can be loaded on demand from the Oracle database. TimesTen has several loading strategies, described below in the section Cache Loading Strategies. The application can determine if the TimesTen database will be refreshed synchronously or asynchronously from the Oracle database.
This configuration may require the Cache Connect to Oracle option to TimesTen. I will describe caching options below in the section Cache Loading Strategies.
Partial database read cache

The following Figure 8 shows TimesTen as a read-only cache for an Oracle database. Furthermore, only part of the Oracle database is cached. This is different from the previous example where all the data was cached but only part was loaded.

[image: image8]
Figure 8: Partial read cache

If the user requests data that is not cached, TimesTen uses the SQL Pass Through feature to transparently request the data from the Oracle database. Thus the application can be written independently of the location of the data. The application can determine if the TimesTen database will be refreshed synchronously or asynchronously from the Oracle database.
This configuration may require the Cache Connect to Oracle option to TimesTen. I will describe caching options below in the section Cache Loading Strategies.
Distributed database read cache

The following Figure 9 shows a subset of the Oracle database being cached on different distributed application servers.

[image: image9]
Figure 9: Distributed database read cache

This data is managed centrally in an Oracle database but is distributed to remote TimesTen databases. The application determines if the TimesTen database will be refreshed synchronously or asynchronously from the Oracle database.

This configuration may require the Cache Connect to Oracle option to TimesTen. I will describe caching options below in the section Cache Loading Architectures.
Database update cache

The following Figure 10 shows TimesTen as an updateable cache of an Oracle database.

[image: image10]
Figure 10: Database update cache

This configuration gives the application users fast response time and also the ability to update the data. The Oracle database can be updated from TimesTen either synchronously or asynchronously. The application also determines if TimesTen will be refreshed synchronously or asynchronously from Oracle.

This configuration may require the Cache Connect to Oracle option to TimesTen. I will describe caching options below in the section Cache Loading.
High availability update cache
The following Figure 11 shows TimesTen replicated among application servers as an updateable cache of an Oracle database.

[image: image11]
Figure 11: High availability update cache
This is similar to the previous configuration except that two application servers running TimesTen are clustered. They will keep themselves synchronized independently of the refresh strategy established with the Oracle database. Alternatively, changes to the Oracle database can be uploaded to one TimesTen database and then replicated to the other TimesTen databases. This configuration requires the Replication TimesTen to TimesTen option.
This configuration may require the Cache Connect to Oracle option to TimesTen. I will describe caching options below in the section Cache Loading Strategies.
Cache loading
This section describes the options for loading data into a TimesTen database when it is a cache for an Oracle backend database.

Cache definitions

The following Figure 12 shows the principle TimesTen components in a parent-child data relationship.

[image: image12]
Figure 12: Cache definitions

The components are as follows:

· Root table
In a simple database model, the table to be cached. In a complex database model, the parent table making the reference to foreign data.
You may cache either all the columns or just a subset of them. Similarly, you may cache either all the rows in the table or just a subset of them.
· Child table
The table holding the foreign data. You may cache either all the columns or just a subset of them. The rows cached are determined through the foreign key by the root table rows that are cached. If you declare no parent-child relationships in TimesTen, there will be no child table.
· Cache group
The set of tables comprising the root table and all its children. The entire cache group must be cached in TimesTen. This ensures fast access to all the data associated with the root table row.
· Cache instance
One occurrence of a cache group, or one record from the root table plus the corresponding record from each child table. TimesTen will always cache the complete cache instance. This avoids having to get part of the structure from the Oracle database and thus slowing the query.
· Cache instance key
The unique identifier for a record in the root table. This may be used to identify certain cache instances to load into the TimesTen database. (See the following section Cache Loading Strategies for details.) It may also be the table’s primary key.
The tables in the Oracle database that are cached in TimesTen are known as the base tables.

Cache loading strategies

This section describes the different ways that data may be selected for loading from an Oracle database into a TimesTen database.

1. All cache group instances

The following Figure 13 shows the loading of all cache group instances (all rows in the cache group) into TimesTen.

[image: image13]
Figure 13: Cache all cache group instances
The DBA calls a builtin procedure to load the TimesTen database from Oracle. In this case, all the rows and columns from the cached tables are loaded.

Use this strategy when you want peak retrieval speed for all the cached data and when the cached data will fit into the TimesTen database.
2. Some cache group instances by key
The following Figure 14 shows the loading of a subset of the cache group into the TimesTen database. The subset rows are identified by their cache instance key.

[image: image14]
Figure 14: Cache some cache group instances by key
The DBA calls a builtin procedure to load a subset of the rows in the cache group into the TimesTen database. The selected rows are identified by their cache instance key. Unloaded rows can be loaded later on demand in conjunction with an appropriate aging strategy. See the section Cache Aging below for details.
Use this strategy when the TimesTen database is too small to hold the entire cache group. For example, we may decide to cache only the information for our largest customers so that they get the fastest service from our service desk.
3. Some cache group instances by predicate

The following Figure 15 shows the loading of a subset of the cache group into the TimesTen database. The subset rows are selected from the cache group by a query predicate.

[image: image15]
Figure 15: Cache some cache group instances by predicate

The DBA calls a builtin procedure to load a subset of the rows in the cache group into the TimesTen database. The selected rows are identified by a query predicate. Unloaded rows can be loaded later on demand in conjunction with an appropriate aging strategy. See the section Cache Aging below for details.
Use this strategy when the TimesTen database is too small to hold the entire cache group. For example, we may decide to cache only the information for our fastest-selling products so that orders for those products will be processed fastest by our sales desk.
4. Cache group instances on demand

The following Figure 16 shows loading cache group instances as they are requested.

[image: image16]
Figure 16: Cache group instances on demand

The TimesTen is initially empty. Cache groups are loaded as they are requested by users. TimesTen provides tools to manage the cache. See the section Cache Aging below for details.
Use this strategy when data demand is unknown. For example, we are a book retailer where titles n demand can change quickly. We cache titles as they are purchased in anticipation that the same title will be requested by subsequent customers.
5. User-defined
The above strategies are implemented with builtin TimesTen procedures. Therefore they require the Cache Connect to Oracle option.

You may also choose to load the TimesTen database manually using SQL statements. If you choose this strategy to load the data, you must also create and manage the refresh of the data from Oracle to TimesTen.

This strategy is appropriate when you have very specific application requirements.
Cache refreshing
This section describes the different ways that data which is updated in an Oracle database may be refreshed in a TimesTen database.

1. Explicit refresh

The following Figure 17 shows an explicit refresh of the TimesTen database.

[image: image17]
Figure 17: Cache explicit refresh

Suppose that a single row in the cache group is updated in the Oracle database. The application can issue an explicit refresh that will refresh either only the updated cache instance (shown above) or the entire cache group. If only the cache instance is refreshed, all rows that make up the cache instance must be refreshed because the refresh is actually an unload followed by a load.

Use this strategy when the TimesTen cache must be kept synchronized with the Oracle database.
2. Full automatic refresh
The following Figure 18 shows a full automatic refresh of the TimesTen database.

[image: image18]
Figure 18: Cache full automatic refresh

Again suppose that a single row in the cache group is updated in the Oracle database. The update remains in the Oracle database until such time as a scheduler initiates a refresh of the entire cache group. You can specify the scheduled interval.
Use this strategy when the TimesTen database is to be refreshed intermittently and so real time synchronization with the Oracle database is not required. Furthermore you expect that most of the rows in the cache group will be updated in each refresh interval and so it is productive to refresh the entire cache group. If only a few rows are changed in each interval, an incremental automatic refresh (see the next section) may have less impact on both databases.
3. Incremental automatic refresh

The following Figure 19 shows an incremental automatic refresh of the TimesTen database.

[image: image19]
Figure 19: Cache incremental automatic refresh

Once again suppose that a single row in the cache group is updated in the Oracle database. The update remains in the Oracle database until such time as a scheduler initiates a refresh of the cache instance. At that time, the row (or the cache instance) is updated in TimesTen. You can specify the scheduled interval.

Use this strategy when the TimesTen database is to be refreshed intermittently and so real time synchronization with the Oracle database is not required. Furthermore, you expect that only a small percentage of the rows in the cache group will be updated in each refresh interval.
Cache aging

Cache aging is the process of managing the data that is kept in the cache. Aging enables TimesTen to cache more data than will fit in memory.

There are two restrictions on creating an aging strategy:

1. Aging can be applied only to the root table. When a root table row is deleted by aging, all its child table rows are deleted also.
2. Only one aging strategy can be applied to each root table.
The following are two strategies to manage data in a TimesTen cache:

1. Time based

Time based aging keeps the data in the cache for a certain period of time. The following Figure 20 shows time based aging.

[image: image20]
Figure 20: Time based aging

Suppose a price list is created in an Oracle database and then loaded in a TimesTen cache. The price list in Oracle is updated throughout the day but these changes are not refreshed to TimesTen until some time overnight. At that time, rows in the TimesTen database are automatically deleted. Then the rows from Oracle are automatically loaded.
This aging strategy is used when data is kept for only a fixed time.
2. Usage based
Usage based cache aging maintains a certain volume of data in the cache by applying a least recently used (LRU) formula to the data. The following Figure 21 shows the sage based strategy.

[image: image21]
Figure 21: Usage based aging

The setup for usage based aging is to establish a high threshold and a low threshold of memory for TimesTen to use.

During time intervals 1 and 2, the data uses less than the low threshold percentage of the server’s memory. In the third time frame, the data uses more than the high threshold of memory. During time interval 4, TimesTen identifies enough least recently used rows to delete in order to bring the memory used below the low threshold. The aging process is complete in time interval 5.
This aging strategy is useful in a dynamic environment where we want to make the best use of TimesTen server memory and also to provide the fastest overall service to the users.
References

The following is an interesting article on TimesTen: Oracle Magazine, Nov. 2006, When Microseconds Count, page 65
The complete TimesTen documentation is available at the following site: http://www.oracle.com/technology/products/timesten/index.html
Contacting the author

I hope you found this paper useful. If you have any questions or comments, please send an e-mail to David.Tipple@statcan.ca.

Memory available

5

4

3

2

1

SQL Pass Through

Database file

Time

Price list table

. . .

High threshold

Update price list

Refresh

Load

Day n+1

Day n

Price list table

Oracle database

Price list table

Exceed high threshold

% of memory used by data

Low threshold

Delete oldest data

Price list table

TimesTen database

6

9

3

12

Update

Cache instance

Child table

Root table

Oracle database

Child table

Root table

Refresh

TimesTen database

6

9

12

Update

3

Cache group

Child table

Root table

Oracle database

Child table

Root table

Refresh

TimesTen database

Cache group

or

Cache instance

Update

Child table

Root table

Oracle database

Child table

Root table

Refresh

TimesTen database

Replicate

User

Uncached table

Child table

Root table

Oracle database

Child table

Root table

SELECT…

WHERE …

TimesTen database

DBA

Uncached table

Child table

Root table

Oracle database

Child table

Root table

Load instances by predicate

TimesTen database

DBA

Uncached table

Child table

Root table

Oracle database

Child table

Root table

Load instances by key

TimesTen database

DBA

Uncached table

Child table

Root table

Child table

Root table

Load cache group

Oracle database

TimesTen database

Cache group

Cache instance

Cache instance key

Child table

Root table

Product

5

Time_zone

Xanadu

Name

32

Country_code

32

548

Country_code

ID

Product

Application

TimesTen

Database

Update

Read and update

Database server

Application servers

Oracle

database

Application

TimesTen

Database

Update

Read and update

Database server

Application server

Oracle

database

Application

TimesTen

Database

Read only Halifax

Application

TimesTen

Database

Halifax data

Toronto data

Update

Read only Toronto

Database server

Application server

Oracle database

Application

TimesTen

Database

Read and update

Uncached

Cached

Update

Read only

Database server

Application server

Oracle database

Application

TimesTen

Database

Update

Read only

Database server

Application server

Oracle

database

Application

TimesTen

Database

Application

TimesTen

Database

Application

TimesTen

ODBC/JDBC

Database server

Client

User interface

TimesTen

Database

Child process

Application tier

User interface

Linked application

TimesTen

Database

ODBC/JDBC

Presentation tier

Database server

Client

User interface

Application

TimesTen

Database

Child process

Application

Application tier

Presentation tier

Linked application

TimesTen

Database

TimesTen

Application

User interface

Checkpoint

Checkpoint

Application server

Transaction log buffer

Transaction log

Checkpoint file

Database

Optimizer

Application

PAGE
1
Paper #123

[image: image1][image: image22.wmf][image: image23.bmp][image: image24.wmf]