Architecture

Near-High Availability Using a Database Farm and Shared Storage
 Jan L. Baumgras, The Dow Chemical Company
 Jane J. Chen, The Dow Chemical Company
Robert L. Graham Jr., The Dow Chemical Company
Andrew J. Head, The Dow Chemical Company
Steven R. Remsing, The Dow Chemical Company
Philip R. Jozwiak, Kelly IT and Engineering Resources

Introduction
Oracle Corporation and other vendors offer various solutions for providing high availability, but those also come with a high price tag. Costs go beyond the price of redundant hardware and special software such as Oracle® Real Application Clusters (RAC). High availability usually also means higher complexity which in turn means higher support costs, training costs etc. The impact of down time has to be quite large to justify the cost of high availability.

At The Dow Chemical Company (Dow) there are hundreds of databases ranging in size from a few megabytes to terabytes, but only a few are so critical that they justify the expense and complexity of high availability solutions. Obviously the users aren’t pleased when databases are down, and there is some impact on the business when any system is down, so the goal is still to provide as close to 100% uptime as practical, but we should recognize that 100% uptime is a desirable situation, not a requirement.

In this paper we discuss an architecture we recently implemented to provide near-high availability. We describe some of the problems we had to solve and will use a case study to compare this architecture to alternatives such as RAC. This architecture is simple and inexpensive, but of course no one solution is right for all situations. As DBAs and system administrators we usually have to consider the pro’s and con’s of alternative solutions and pick the one that best meets the needs at a price we can afford. This paper also describes the considerations that led us to our choice. As with all architecture choices, especially new ones, we expect this to evolve as we learn.

Near-High Availability Defined TC "Near-High Availability Defined" \f C \l "1"
What do we mean by near-high availability? It’s easier to consider availability in terms of downtime rather than uptime because it helps separate the desirable (100% uptime) from the necessary (no more than X amount of downtime). Stated subjectively, the tolerance for down time is the maximum amount of time the system can be unavailable before there is a serious impact on the business. Stated more objectively, the tolerance for down time is the point at which the cost of an outage (not necessarily just monetary cost) exceeds the cost of the measures required to prevent or recover from any reasonably likely failure. This statement is true regardless of the size or importance of a database.

Costs to the business of an outage tend to increase with the length of the outage, although not necessarily in a linear fashion. With systems that truly require high availability, this cost is either very high immediately or rises sharply right away while in other situations it might start slowly then increase more rapidly over time. The shape of the curve doesn’t matter as much as the fact that the cost can be related to the length of the downtime. Conversely, the cost of preventing outages or recovering rapidly from them jumps more rapidly as the permissible down time shrinks.

If we plot both costs against time, we see that there is a point where the two costs are equal. Figure 1 illustrates an arbitrary example where the cost impact of down time rises quickly. The cost of the infrastructure needed for high availability (e.g. RAC) is also very high but drops sharply and incrementally as we reach points in time where the required availability can be met without these expensive options.

[image: image1.emf]Required Availability

0

50000

100000

150000

200000

250000

300000

350000

135791113

Down time (hours)

Cost (dollars)

cost of preventing

down time

loss due to down

time

Figure 1

The cost-based tolerance for down time is the time at which these two lines cross. If this window is shorter than the time it takes to implement a traditional restore/recover approach then we need to look at other technologies but not necessarily high availability solutions like RAC. If the window is a few minutes to a half hour, we consider this to be near-high availability rather than true high availability. The challenge is to find a solution that is good enough and which costs less than a high availability solution.

This paper follows a case study describing near-high availability using shared storage and a database farm. This case study is based on several applications for Dow’s Research and Development department.

Case Study – The Requirements TC "Case Study – The Requirements" \f C \l "1"
Dow R&D runs Oracle to support several purchased applications. The database requirements for many of these are similar, so we omit minor differences and present them as a single case study. The infrastructure to support these applications must meet requirements for all the usual categories (e.g. security), but we’ll focus only on those directly or indirectly related to availability.
Availability TC "Availability" \f C \l "2"

Key factors determining the availability requirement:
· Most databases receive data from laboratory instrument processes that sometimes run unattended. Some can span nights and weekends.

· The Oracle databases are used by researchers around the world, so the work day length is close to 24 hours.
The allowance for planned down time is small but not zero. Short windows for maintenance can be arranged by coordinating with lab operations.

The fact that instruments can be sending data at any time implies that the impact of unplanned down time is severe. However, the software architecture allows instruments to continue to operate safely while the database is unavailable because data loads are asynchronous. Therefore, unplanned downtime is highly undesirable, but an outage that lasts only a few minutes or so is tolerable.

Protecting Against Data Loss or Corruption TC "Protecting Against Data Loss or Corruption" \f C \l "2"
Protecting data is obviously a key consideration when designing a database infrastructure, and protection solutions are related to availability. The architecture we present can be blended with other tools to adjust the backup/recovery strategy as needed, so we discuss backup/recovery only to the extent necessary to consider impact on availability.

The impact of losing data varies. Lost data can usually be recreated by rerunning experiments, but in some situations reruns are quite expensive. Being able to recover data to the point of failure after any reasonably likely failure is important but not critical.

Strategies for restoring/recovering data are related to availability because restoring files and performing recoveries takes time. As described in the previous section, the tolerance for down time in the case study is measured in minutes. The database infrastructure must do one or both of the following:

· Reduce the likelihood that restoring files would be necessary.

· Reduce the time it takes to restore from a backup to no more than a few minutes.
Oracle Solutions Considered TC "Oracle Solutions Considered" \f C \l "1"
Oracle and third party vendors offer solutions for high availability and data protection. We considered RAC and Data Guard. In this section we briefly describe RAC and Data Guard then summarize some of the general advantages and disadvantages of each. Later we’ll compare our database farm alternative to RAC and Data Guard.

RAC TC "RAC" \f C \l "2"

Throughout this paper the term cluster means a RAC. With RAC, Oracle instances running on multiple servers open the same database. The distinguishing feature of a RAC cluster is that these instances communicate with each other via the cluster interconnect, so each instance is aware of data changes committed by the other instances. User sessions are connected to one instance at a time but if an instance or node goes down, sessions are transferred to a surviving node. In-flight queries complete, and under the right conditions, in-flight transactions can also complete after the session fails over to the other server.

The advantage of implementing RAC is it provides protection from a computer node or instance failure. With a sufficiently robust RAC configuration, rolling upgrades etc. can be performed, so high availability is possible. RAC also provides some load balancing.

The disadvantages or RAC are its cost and complexity. Adding RAC increases Oracle license costs by 50%. Implementing the high speed interconnect adds to hardware costs. One or more shared storage devices are necessary. The value of RAC is reduced if other single points of failure remain, so typically more hardware to provide redundant paths to storage and the node interconnect is also added. Setting up and managing a RAC is also considerably more complicated than standalone servers, so managing them requires more expertise.
We have done a RAC trial to understand how it benefits our applications and determined that our requirements now are for near-high availability. The cost and complexity of RAC would be difficult to justify at this time, although we want to keep this option open for the future.

Data Guard TC "DataGuard" \f C \l "2"

Data Guard is used to provide a standby database that can take over should the primary database fail. With Oracle10g the standby can be physical (data blocks copied) or logical (SQL Statements duplicated). A logical standby can be made available to users for read-only operations such as reporting or backups and can be tuned differently (e.g. different indexes) to better support reporting instead of transactions. With Oracle10g, the standby database can be configured to automatically take over if the primary fails, but when the primary is restored switching back is a manual operation.

The advantage of Data Guard is that it is included in the Oracle database license. It is both less complicated and less expensive than RAC. The hardware necessary for the RAC interconnect and path redundancy is not needed. One or more standby databases can be in a remote location to enable operations in the event of a site-wide disaster. RAC can’t include remote nodes, but it is possible to run both Data Guard and RAC.

Data Guard has some disadvantages. The standby database requires a separate database license. Like RAC, at least two servers are necessary. Unlike RAC, each database has its own set of files, so the total storage needs are doubled compared to either RAC or standalone servers.

For our case study, Data Guard does not provide significant benefit. The availability requirements don’t justify providing a second licensed server along with additional storage for each database. As the user base becomes more global being able to recover from a site disaster will become more important and could justify using Data Guard remote standbys in the future.

The Solution – A Database Farm Instead of a Cluster TC "The Solution – A Database Farm Instead of a Cluster" \f C \l "1"
A database farm is a set of servers used to run databases. We’ll take a closer look at the hardware architecture shortly, but logically our database farm consists of:

· Several relatively inexpensive Intel-based servers. Some run production databases while others run development databases, but we do not mix both production and development on the same server.

· All servers run identical software configurations. (E.g. All operating system and Oracle versions are identical.)

· All nodes connect to the same highly reliable shared storage device. We chose a Network Appliance® Filer, but other devices could be used.

· The Filer is configured with multiple disk redundancy, so two disks can fail simultaneously without bringing any database down.

· The Filer is configured with two heads that can take over for each other if one fails.

· The Filer is presented to each node as a mount point that is always mapped to a drive and directory structure as f:\oracle\oradata\<instance_name>. As we’ll see, this is a key implementation choice for rapid recovery.

· All data files are placed on the Filer. Copies of the redo logs, control files, archive logs are kept on both the Filer and locally attached storage. The local copies of these files allow us to restore and recover the database in the unlikely event that the Filer itself suffers a catastrophic failure.

· Configuration files (e.g. the init.ora file and spfile) are on locally attached storage. To be able to restore current settings, recent copies would also be kept on the Filer.

· The directory structure for all nodes is identical. As we’ll see, this is also a key implementation choice for rapid recovery.

· Database backups and exports are placed on a separate large storage arrays attached to each server. Should the Filer fail, we could rebuild databases using these backups. These storage arrays might be replaced with shared storage in the future.

Because the directory structures are identical, and the storage holding the data files is presented as a mount point, we are able to switch a database from one node to another in a very short time using the following steps:

1. Unmount the disk containing the database files from the original node.

2. Mount the disk on a different node.

3. We’re running on Windows Server® 2003, so we have to create the service for the instance using the oradim utility. This step would be different for other operating systems.

4. Copy the redo logs and other configuration files (e.g. spfile) to the local locations on the new server from the Filer.

5. Start the new instance.

6. As necessary, copy the archive logs to the new node.

These steps can be accomplished in about a half hour or less. If the move is planned, some steps such as creating the new instance and copying the configuration files can be done before the old instance is stopped, so a planned change is slightly faster than an unplanned change. With this architecture we can:

· Perform rolling upgrades and patches.

· Bring a production database back up quickly from a node failure by “moving it” to another node without the time-consuming steps of restoring files from backups. In the case of an unplanned shutdown, the database needs to perform automatic instance recovery.

· Make full use of all hardware. If it becomes necessary to move a production database off a failed node, we can shut down a development instance to make room for the production database.

The result is that this architecture supports near-high availability and provides most of the benefits of RAC and Data Guard without the expense or complexity. There is redundancy at every level, but the most expensive component is the NetApp® Filer. Each instance and database runs the same as they do on standalone servers, so managing them requires the same DBA skills as standalone servers.

As a side comment, using a central storage device helps with flexibility and reduces wasted storage space. Data growth is difficult to predict for many of our databases, and we can allocate more space on the Filer as needed.

Similarities to RAC TC "Similarities to RAC" \f C \l "2"
· A single database instance can support several applications which minimizes license and operations costs. (This is also true of standalone servers.)

· A single node can host more than one instance which also minimizes license and operations costs. (This is also true of standalone servers.)

· The applications need to have similar management requirements and upgrade paths.

· Data Guard can be added to the architecture to create offsite standby databases.

· Redundant paths to shared storage are optional but strongly recommended.

· RACs and farms can be built using low-cost servers.

Differences from RAC TC "Differences from RAC" \f C \l "2"

· With RAC, multiple instances operate on the same database. In a farm each database can only be opened by one instance at a time.

· RAC requires shared storage. A farm does not technically require shared storage, but being able to logically switch instances around rather than physically move files depends on it.

· RAC requires each node have nearly identical operating systems and configurations. (E.g. Slight differences in OS patches are OK, but major version differences are not.) A farm does not require identical operating systems and configurations, but being able to switch instances around depends on it.

Therefore, using a database farm provides most of the advantages of RAC without the cost and complexity.

Similarities to Data Guard TC "DataGuard" \f C \l "2"

If a node fails, the standby database can take over quickly. With a database farm, a database can be switched manually to another node quickly. Monitoring software notifies support personnel if a node fails, and a DBA performs the switch.

Differences from Data Guard TC "Differences from DataGuard" \f C \l "2"

· The standby databases have their own files, which increases storage and license needs. With a farm, there is only one copy of each database, so additional storage and licensing is unnecessary.

· A logical standby database can be used for certain operations like reporting and backups. With a farm, there is only one copy of each database, so these sorts of operations must run against the main database.

Configuration Details TC "Configuration Details" \f C \l "2"
Figure 2 illustrates the database farm implementation.

For simplicity, the diagram shows only one database server, application server, and web server when in fact there are several of each. The application servers and web servers are usually running as virtual machines on the VMWare ESX Cluster, but the database servers are physical computers. This is partly because we can run multiple Oracle instances on each physical server, and partly because Oracle does not officially support VMWare as a platform.

We chose to use iSCSI on the NetApp Filer. There are redundant paths from the backbone to the Filer. iSCSI can be configured either in software or using iSCSI HBAs, but early experience suggests that the HBAs provide better performance. Using fibre channel is an alternative but is more expensive.

Prior experience with similar applications indicated that CPUs were not heavily utilized even when running multiple Oracle instances. Performance is constrained by memory and I/O, so we chose to use dual processor Dell’s to minimize software license costs.

Although software versions and directory structures must be the same to enable moving instances around, hardware does not have to be the same. Larger servers with more memory and CPUs can be added to the farm if more capacity is required.

[image: image2.emf]WS-SUP32-10GE-P3B

CATALYST 6500 SUPERVISOR ENGINE 32

S

Y

S

T

E

M

S

T

A

T

U

S

A

C

T

I

V

E

P

W

R

M

G

M

T

EJECT

DISK 0

CONSOLE

PORT 2PORT 1

L

I

N

K

1

L

I

N

K

2

R

E

S

E

T

TXRXTXRX

L

I

N

K

USB 2.0

PORT 3

STATUS PHONE

WS-X6148-GE-TX

47

48

37

38

35

36

25

26

23

24

13

14

11

12

1

2

4 8 P O R T

12

11

9

10

78563412

24

23

21221920171815161314 36

35

33343132293027282526 48

47

45464344414239403738

10/100/1000

B A S E - T

SWITCHING MODULE

STATUS PHONE

WS-X6148-GE-TX

47

48

37

38

35

36

25

26

23

24

13

14

11

12

1

2

4 8 P O R T

12

11

9

10

78563412

24

23

21221920171815161314 36

35

33343132293027282526 48

47

45464344414239403738

10/100/1000

B A S E - T

SWITCHING MODULE

Gigabit Backbone

72F

1312111009080706050403020100

72F72F72F72F72F72F72F72F72F72F72F72F72F

FAS

270

Power

Status B

Shelf ID

Activity B

Status A

Activity A

NetworkAppliance

Power

System

Shelf ID

Loop B

Fault

Loop A

72F

DS

14

MK2

FC

NetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkApplianceNetworkAppliance

72F72F72F72F72F72F72F72F72F72F72F72F72F

SAN Storage

iSCSI VLAN

Gig-E VLAN

Virtual Network

NetApp FAS270C Filer with 8 TB Raw

Clustered for HA Active/Active

Redundant power

Two network paths to switch (administration, NFS,

CIFS)

Two iSCSI network paths to switch

Existing Backbone Gigabit Ethernet switch

VLAN for general access

VLAN for iSCSI

Existing VMware Enterprise Server cluster

iSCSI SAN provides shared storage enabling

VMotion HA.

Rapid deployment of new systems from templates

Database Farm Design

(per workgroup)

PowerEdge 2850 –2U / 900W (1x)

PowerVault 220S –3U / 800W (1x)

Total –5U / 1700W

VMware ESX Cluster

9

oo

10

oo

11

oo

12

oo

13

oo

14

oo

15

oo

0

oo

1

oo

2

oo

3

oo

4

oo

5

oo

8

oo

PowerVault

220S

Database Server

Virtual Application Server

Virtual Web Server

Four physical database

servers, multiple virtual

application and web servers

Figure 2

Using a consistent directory structure on all nodes and choice of file placement also enables rapid switching of instances. The table below illustrates the storage and directory structure.

	Drive Letter
	Capacity
	Primary Use
	RAID Configuration
	Average Utilization

	C:
	68 GB
	System drive
	RAID 1 – Mirrored pair
	23.5%

	D:
	68 GB
	Oracle Home
	RAID 1 – Mirrored pair
	0.7%

	E:
	66 GB
	Local Redo Logs
	RAID 1 – Mirrored pair
	0.1%

	F:
	2 GB
	Mount points
	RAID 1 – Mirrored pair

(same physical drives as E:)
	0.1%

	iSCSI volume
	Varies based on database
	Each database has it’s own mount point

Data, index, and SAN copy of the redo logs, control files, and archive logs
	RAID-DP*, from the NetApp Filer

Each volume is sized based on the database, plus 50% for growth

*RAID-DP is an extension of RAID 4 that includes a diagonal parity calculation that allows the system to sustain a double disk failure without data loss
	Varies based on database

	I:
	818 GB
	Backups
	RAID 5
	Varies

	J:
	818 GB
	Backups
	RAID 5
	Varies

Figure 3

Drive letters C:, D:, and E: map to internal disks which are still underutilized. It would be possible to reduce the number of physical disks by installing the Oracle software on the system drive, but our policy is to avoid installing third party software on the system disk. Similarly, the redo logs could be on the same physical disks as the Oracle software if performance remains acceptable.

Drive letters I: and J: map to disk arrays which have separate controllers from the internal disk. They contain RMAN backups, export files, and a copy of the archive logs. These drives are backed up to tape daily.

The iSCSI volume is physically located on the NetApp Filer and mounted as F:\oracle\oradata\<instance name>. As described earlier, all data files are on the Filer as well as copies of the redo logs, control files, and recent copies of configuration files.

The important issue is not the exact configuration or file structure. What matters is making it possible to move a database rapidly from one node to another:

· The logical directory structure is the same on all servers. It would be possible to move a database if the directory structures were different, but running the Oracle commands to move files takes time.

· Keeping one copy of the redo logs, control files, archive logs, and recent configuration files on the Filer enables moving databases rapidly.

· Keeping a local copy of the redo logs, configuration files, and archive logs on local disks is optional but enables point of failure recovery should the NetApp Filer fail.

· The configuration files are in the Oracle_Base and Oracle_Home directory structures by default, so we chose to leave them there and make copies on the Filer.
Advantages/Disadvantages of a Database Farm Compared to RAC and Data Guard TC "Advantages/Disadvantages of a Database Farm Compared to RAC and DataGuard" \f C \l "1"
We’ve already compared operations features of a database farm to both RAC and Data Guard, but an architecture decision is based on advantages and disadvantages.

Advantages of Database Farms Compared to RAC TC "Advantages of Database Farms Compared to RAC" \f C \l "2"
· A farm requires database licenses but not the premium cost for RAC.

· A farm does not require hardware to support the interconnect needed by RAC.

· RAC is somewhat complicated and requires additional technical expertise to run. Farms are less complicated, and DBAs need no special expertise.

Advantages of RAC Compared to Database Farms TC "Advantages of RAC Compared to Database Farms" \f C \l "2"
· Because RAC allows more than one instance to operate on a single database, load can be distributed across multiple inexpensive nodes.

· Transparent failover is possible with RAC but not with the manual transfer procedure used with the farm.

For our case study, load balancing is not important, and the time needed to perform manual transfer of instances from one node to another is acceptable. Because in our case the applications load data largely asynchronously, the application servers can be paused, reconnected to a different node, and restarted without data loss. Therefore, in this case the benefits we’d see from RAC are also provided by a database farm, but the cost is lower.

It is worth noting that a database farm can be a precursor to RAC. Much of the same hardware can be used in either configuration. Because we might need to go to RAC, we chose hardware that can be upgraded with the interconnects etc. later.

Advantages of Database Farms Compared to Data Guard TC "Advantages of Database Farms Compared to DataGuard" \f C \l "2"
· Data Guard makes a copy of the database, so each copy requires as much storage as the primary. Only one copy of the database exists on a database farm

· A standby database must be running, so it consumes hardware and license resources. With a database farm, only operational instances consume resources. Should it be necessary to switch a production instance to another node, development databases can be shut down to provide the needed capacity.

· Data Guard can be used in conjunction with a database farm if desired to create an offsite standby.
Advantages of Data Guard Compared to Database Farms TC "Advantages of DataGuard Compared to Database Farms" \f C \l "2"
· If a node fails, Data Guard can be configured to switch automatically to one of the standby databases. With a farm, this switchover is manual.

· With some limitations, a logical standby can be used in place of the primary for some operations (e.g. reporting, backups).

· One or more of the Data Guard standby databases can be offsite which helps ensure business continuity after a site catastrophe (tornado, flood, etc.) A farm doesn’t support offsite capability unless combined with other technologies.
For our case study, database farms provide a sufficient ability to switch a database from a failed node to a surviving node, and there’s no real benefit to having a local standby. We might at some point in the future decide that we need a remote standby and will implement Data Guard along with the farm.

Is a Database Farm Right for Your Situation TC "Is a Database Farm Right for Your Situation" \f C \l "1" ?

For our case, a database farm was the most cost effective choice. Using a reliable, central storage device and consistent server configurations allows us to move instances as necessary and within the allowable window of down time. There is no need to use an expensive and complex high availability solution. No architecture is the right choice for all situations, though, so what are the most important considerations?

· What is the true tolerance for down time? Can you switch the instance to another node within that window? If so, a database farm might be the right choice, but if not then a high availability solution such as RAC might be better.

· Can you afford reliable, shared storage? If so, a database farm might be the right choice. If not, then standalone servers with Data Guard might be better.

· Do you have the necessary expertise to set up and operate the components? DBA skills required for a farm are similar to those required for standalone servers. However, reliable shared storage is crucial, and configuring and operating a redundant network storage solution requires an experienced network and storage administrator. If that expertise is not available, then standalone servers with Data Guard might be better. Of course, RAC also requires good network and storage expertise.

· How many databases are there? Tracking which nodes are hosting which databases is a manual operation with a database farm. The Grid Control must also be manually reconfigured if instances are moved. For large numbers manual changes are cumbersome.

Oracle® is a registered trademark of Oracle Corporation
Network Appliance® is a registered trademark of Network Appliance, Inc.

NetApp® is a registered trademark of Network Appliance, Inc.

Windows Server® 2003 is a registered trademark of Microsoft Corporation

6

127

