Database

oracle Flashback Features: Alternative Approaches to Traditional Database Recovery
Monica Penshorn, Medtronic, Inc.
Introduction
Database outages can lead to huge losses in business revenue, frustrated customers, and angry executives. Database administrators have the important responsibility of bringing databases back to service as soon as possible. Oracle’s development teams have provided their customers with a nice gift in the form of its Oracle Flashback Features. Now DBAs and developers have faster ways to recover from logical database issues than traditional backup and recovery options provided. This paper summarizes the various types of flashback features available, when they are applicable, and how to use them. Most features discussed are offered with Oracle Database 10g, but we’ll also take a brief look at the 11g Total Recall Option. The best part of all is that these valuable features are very simple to use!
flashback Database (10g)
Flashback Database uses flashback logs in the Flash Recovery Area to restore an entire database back in time. Flashback Database option is used in response to events such as an accidental table or user drop. Flashback logs are similar to archive logs except that they rewind the database backward instead of rolling it forward.

enable flashback database

1. Place database in archivelog mode.

2. Configure flash recovery area.

db_recovery_file_dest_size = 20G

db_recovery_file_dest = ‘/ora01/flash_recovery_area’

3. Set how much Flashback Log information to store in Flash Recovery Area (FRA)

ALTER SYSTEM SET db_flashback_retention_target=1440; (minutes/1 day)

Retention is not guaranteed – space needs to be available in Flash Recovery Area

1440 minutes = 1day

4. Turn Flashback Database Feature on.

STARTUP MOUNT;

ALTER DATABASE FLASHBACK ON;

5. Verify flashback is enabled.

ALTER DATABASE OPEN;

SELECT flashback_on FROM v$database;

activate flashback database

1. Start database in mount mode.

STARTUP MOUNT;

2. Execute desired flashback statement.

FLASHBACK DATABASE [to scn <scn#>];

 [to sequence <log sequence#>];

 [to timestamp (SYSDATE – 1/24)]; (1 hour ago)

3. Verify results.

ALTER DATABASE OPEN READ ONLY;

4. Open with resetlogs.

ALTER DATABASE OPEN RESETLOGS;
flashback database views

V_$FLASHBACK_DATABASE_LOGFILE

V_$FLASHBACK_DATABASE_LOG

V_$FLASHBACK_DATABASE_STAT

flashback drop (10g)

Dropped objects are not actually removed from the database when an option called the “Recyclebin” is enabled. Instead the dropped object and its dependencies are simply renamed to system-generated names. There is no movement of the object and no deletion of the object’s data.
enable flashback drop

Set parameter recyclebin to on
Metadata about a dropped object can be queried from the dba_recyclebin view. Space for the dropped object will show as being available in DBA_FREE_SPACE, but used in DBA_SEGMENTS.
The space occupied by a dropped object will be reclaimed by the database if there is space pressure in the tablespace where it lives, or a PURGE command is used to permanently delete the object from the database.
restore a dropped object
FLASHBACK TABLE <table_name> TO BEFORE DROP [RENAME TO <new_table_name>];
flashback drop views

USER_RECYCLEBIN

DBA_RECYCLEBIN

flashback table (10g)

Flashback Table recovers a table to a past point in time. This can be used in circumstances following an incorrect insert, update, or delete against a table. Since Flashback Table relies on undo information it cannot be used to restore a truncated table, and can only retrieve data that satisfies the undo_retention setting.
enable flashback table

1. Perform Necessary Grants:

GRANT flashback any table TO <user>;

GRANT flashback <OBJECT_NAME> TO <user>;

GRANT select, insert, update, delete

 ON <object_name>

 TO <user>;
2. Enable Row Movement on the Table since ROWIDs can change during the flashback table operation:
ALTER TABLE emp ENABLE ROW MOVEMENT;
3. Ensure that UNDO_RETENTION is set to the length of time that you’d like users to be able to flashback their queries to.

flashback table usage examples

FLASHBACK TABLE emp TO SCN 123123;

FLASHBACK TABLE emp TO TIMESTAMP TO_TIMESTAMP

(‘2007-10-03 12:00:00’, ‘YYYY-MM-DD HH24:MI:SS’);

restore points
Restore points are very similar to the concept of a transaction Savepoint. They allow you to mark a table at a state of interest. In the future you can return back to your defined baseline without needing to recall the exact SCN or timestamp. As long as you have the privileges you do not need to be the owner of the table being flashed back to the restore point, and the operation can be performed from a different session than the one that created the restore point.
1. Mark a known state that you may want to restore back to.

CREATE RESTORE POINT <my_restore_point>;
2. Do some work and commit it.
3. Retrieve the table back to your defined baseline.
FLASHBACK TABLE <table_name> TO RESTORE POINT <my_restore_point>;

restore point view

v$restore_point
flashback table restrictions

· Flashback table uses undo therefore it is sensitive to the undo_retention setting

· It cannot be used to flashback data to a time prior to when the table was truncated or structurally modified. The following error will occur if you try to do that:

 “ORA-01466: unable to read data - table definition has changed”
· Flashback features aren’t supported for the sys user.

· Flashing back system and remote tables is not possible.

· Flashback operations will not succeed if it causes a constraint violation.

· Flashback operations do not flashback statistics.

flashback query (9i)

Flashback Query allows the user write a query that on-the-fly selects data from a table as it looked at a previous point in time. It relies on undo information which means that it will only retrieve data that meets the undo_retention setting.
flashback query usage example

 SELECT *

 FROM emp AS OF TIMESTAMP TO_TIMESTAMP

 (‘2007-10-03 12:00:00’, ‘YYYY-MM-DD HH24:MI:SS’)

 WHERE empid = 12345;

 INSERT INTO hr

 (

 SELECT *

 FROM emp AS OF TIMESTAMP TO_TIMESTAMP

 (‘2007-10-03 12:00:00’, ‘YYYY-MM-DD HH24:MI:SS’)

 WHERE empid = 12345

);

flashback versions query (10g)

Flashback Versions Query provides the ability to see how data has changed over time. One can see and restore a record as it looked prior to someone accidentally deleting it. This is much faster and easier than the traditional Log Miner option that may require scanning scores of archive logs. Like Flashback Table and Flashback Query, the Flashback Versions Query can only retrieve data that isn’t older than the undo retention setting.
flashback versions query usage example

SELECT versions_xid, versions_startscn,
 versions_endscn, versions_operation,employee

 FROM emp VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

 AS OF SCN 4779790251344

 WHERE empid = 12345;

SELECT versions_xid, versions_startscn,

 versions_endscn, versions_operation,

 versions_starttime, versions_endtime, empid

 FROM emp VERSIONS BETWEEN TIMESTAMP MINVALUE AND MAXVALUE

 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '3' HOUR);
flashback versions query RESTRICTIONS

· Parameter UNDO_RETENTION must be set appropriately
· Play close attention to the SCN numbers and/or timestamps that return in your VERSIONS BETWEEN queries since they may not return in the order that you expect

· If a table is dropped the row version information is no longer available

· Only committed transactions are available with the flashback versions query
flashback transaction query

Flashback Transaction Query is helpful in multiple ways. It allows us to journey through the undo segments to get the SCN and timestamps for transactions we are interested in so they may be used as input to other flashback features, and it allows us to see the statements required to undo a transaction if we want to.

One pesky drawback is that the FLASHBACK_TRANSACTION_QUERY view relies on the underlying table SYS.X$KTUQQRY which is not indexed so queries against it are noticeably slow.
flashback transaction query usage

 SELECT logon_user, commit_timestamp, commit_scn,

 table_owner, table_name, undo_sql, operation

 FROM flashback_transaction_query

 WHERE table_name = 'ERASEME2'

LOGON_US COMMIT_TIM COMMIT_SCN TABLE_OWNE TABLE_NAME UNDO_SQL OPERATION

-------- ---------- ---------- ---------- ---------- -- ------

PENSHM1 03-FEB-08 4.8109E+12 PENSHM1 ERASEME2 delete from "PENSHM1"."ERASEME2" where R INSERT

 OWID = 'AAADDQAAEAAAAASAAD';

flashback versions query view and table
FLASHBACK_TRANSACTION_QUERY
SYS.X$KTUQQRY
flashback data archive (11g) – total recall option

Flashback Data Archive provides automatic tracking and maintenance of changes to Oracle data. It is Oracle’s response to Sarbanes-Oxley, HIPAA, and other data compliance regulations. A special type of tablespace is used to compress data for longer term data storage. Instead of using undo segments, this feature allows you to access the flashback archive tablespace that has a longer data retention period for your flashback operations.
Flashback Data Archive is an extra cost feature that is part of Oracle’s Total Recall Option.
enable flashback data archive

1. Create a new tablespace with Automatic Segment Space Management
2. Grant privilege required to create a new archive

 GRANT FLASHBACK ARCHIVE ADMINISTER TO <user>;

3. Create the flashback data archive

CREATE FLASHBACK ARCHIVE <flash_archive_name>

 TABLESPACE <tablespace>

 RETENTION 5 YEAR;
4. Verify that the archive has been created.

SELECT *

 FROM dba_flashback_archive;

5. Turn data archiving on for table

ALTER TABLE <table_name>

 FLASHBACK ARCHIVE <flash_archive_name>;

6. Grant privileges to users to perform flashback archive queries

GRANT FLASHBACK ARCHIVE ON <table_name> TO <user>;

flashback data archive usage
Query the table as you would with FLASHBACK QUERY (9i) to retrieve historical data.

SELECT col1, col2, col3

 FROM <table_name> AS OF TIMESTAMP

 TO_TIMESTAMP ('2007-10-09 00:00:00', 'YYYY-MM-DD HH24:MI:SS')

 WHERE col1 = ‘test’;

flashback data archive key points

· Multi-versioning feature for data that relies on undo except that undo information is archived and stored in the database thereby guaranteeing the stated retention period.

· The fbda process generates the data history every 5 minutes by default, but will adjust itself according to level of undo activity

· Table compression is used to reduce the amount of storage needed to hold historical data

· Creates an internal history table for every tracked table which is a replica of the tracked table with an additional timestamp column

· Updates and deletes are tracked, but inserts are not

conclusion

Go forth and start using these great new flashback features. Use them to lure your application folks into upgrading from older versions. Show your management how you’ll be able to significantly save time during outages that were a result of logical data errors. And enjoy the new and easier ways to get valuable data back into the hands of your intended users.
REFERENCE LIST

· OCP Oracle Database 10g: New Features for Administrators, Oracle Press/McGraw-Hill/Osborne, 2004, Chapter 9

· http://download.oracle.com/docs/cd/B28359_01/license.111/b28287/options.htm
· http://www.oracle.com/technology/deploy/availability/htdocs/Flashback_Overview.htm
· http://www.patentstorm.us/patents/7181476-description.html
· http://www.oracle.com/technology/products/database/oracle11g/pdf/flashback-data-archive-whitepaper.pdf
· http://www.oracle.com/technology/obe/11gr1_db/security/flada/flada.htm
· http://www.oracle.com/technology/pub/articles/10gdba/nanda_10gr2dba_part5.html#reset
· http://www.oracle.com/technology/products/database/oracle11g/pdf/flashback-data-archive-whitepaper.pdf.

7

Paper #317

