Database

DATA GUARD and FLASHBACK in 10gR2 – Stress Testing, HotFixes and Data Recovery

April Sims, Southern Utah University
Standbys and data Guard
There are two types of Standby Databases available in the Enterprise Edition of 10gR2 Oracle: Logical and Physical. A Logical Standby is a read-only copy of the primary where redo data from the primary is applied while the database is open via a process called SQL Apply. Additional read/write schemas can be added to the logical standby while still protecting the primary information in read-only mode. Certain datatypes are not supported and some DDL is skipped during the SQL Apply process. A Physical Standby on the other hand is a block-for-block copy of the primary using Redo Apply with different levels of protection against data loss depending on desired performance and resource restrictions. This article’s primary focus will be using the physical standby because it is a guaranteed copy which keeps the testing environment as close to production as possible.

Our organization utilizes inexpensive commodity hardware where the trade-off for less durability is compensated by running more standbys. This reduced our costs overall while ensuring a more robust testing and disaster recovery environment. Along with the fact that certain DATA GUARD configurations can also run in a mixed oracle binary environment – 64-bit and 32-bit but on the same operating system family. You can mix hardware from different manufacturers, number of CPU’s, RAM and storage, processor and operating systems versions and distributions providing even more flexibility in designing the architecture. (See Metalink Note:413484.1) There are some major issues with working in a mixed environment- lack of good documentation, RMAN may not be usable and more errors during switchover/failovers. Note: DATA GUARD cannot be used, only the SQLPLUS command line for mixed environments in 10gR2, this limitation is removed as of 11g.
DATA GUARD provides a complex set of role management services that govern all of the databases in a configuration by using it at the command-line (either SQLPLUS or DGMGRL) or the GUI Enterprise Manager. The Redo Transport services component of DATA GUARD is accountable for transmitting defect-free archive logs from any possible archive location automatically resolving any gaps due to network failures or database unavailability. The Log Apply Services within DATA GUARD are responsible for maintaining the synchronization of transactions. Transitions from one database role to another are called switchovers (planned events) or failovers (unplanned events) where DATA GUARD actually executes all of the tasks during the transition. All of the specialized tasks in this paper are done via SQLPLUS to make the article concise and allow the reader to see what operations are executed vs. using the GUI Enterprise Manager console or the DGMGRL command line utility.
To fully address all issues related to using DATA GUARD for disaster recovery, your organization must first define time limits to keep from overusing the physical standby for tasks other than a full switchover or failover from the primary. Balancing the primary objective of being able to switchover with the least amount of downtime with the ability to more fully utilize the failover hardware in a testing configuration should be measurable limits. These limits can be simply defined in the following terms: Recovery Point Objective (how far back you can lose transactions) and Recovery Time Objective (the longest amount of time you can take to recover) will be the basis to gauge the point of no return.

Our organization has two standby sites. One is located in a different building within the same city block which is labeled as a Local Disaster Recovery Site the other is located 80 miles away in a datacenter facility as the Remote Disaster Recovery Site. All of the stress testing, hot fixing and flashback occurs on the remote site which has a larger Recovery Time Objective window than the local site.
In our production environment the time it took to switchover for a planned outage on the primary instance only took less than two minutes but failing all clients beforehand lengthened the actual process to fifteen. To ensure that no data loss would occur it was decided to shut down all clients/sessions before switching over as stated in the “Switchover and Failover Best Practices: Oracle Data Guard 10g Release 2”, this white paper is available at the MAA website, see URL later in article. Further reduction in time will be gained by scripting the event to run concurrently on the various server applications involved to automate the shutdown of clients, switching over and then bringing the client applications backup.
Flashback and Guaranteed restore points
FLASHBACK technology in 10gR2 allows you to rollback or undo: queries, changed data in tables, dropped tables or even the entire Database. FLASHBACK database can be used to revert logical corruption, patch or a hot fix but it rolls back all transactions which can be disruptive in a production instance depending on when and how the original transactions were created. This is similar behavior as in restoring the entire database from any type of backup. Instead use FLASHBACK on a physical standby rolling it back to a time before the issue occurred. Use SQLPLUS, EXPORT or DATA PUMP to move the missing or changed data back into production. The production instance is still up and going during all of this time with minimal disruption to the few affected users.

Example SQL commands used to enable FLASHBACK on a physical standby, the database should already be mounted but not open (normal operation for a physical standby during Redo Apply). Note that all SQL> designations indicate which database they are executed on STANDBY> or PRIMARY>:

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

STANDBY> ALTER DATABASE FLASHBACK ON;

STANDBY> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=50G; # 2X Database size

STANDBY> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST=’/YOURFILEDEST/’;

STANDBY> ALTER SYSTEM SET DB_FLASHBACK_RETENTION_TARGET=1440; # 1440 minutes

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE DISCONNECT; # using current logfile starts real-time apply

To fully utilize FLASHBACK technology for stress testing, implementing hot fixes or patching it is recommended to save a Guaranteed Restore Point before opening the standby for read/write. This makes the physical standby easy to convert back to its original state after testing is over, returning it to the correct SCN to resume its role as a physical standby.

This article only describes the minimal steps to accomplish certain goals and doesn’t outline all ramifications of doing so in a production environment; please refer to Metalink and Oracle Documentation for more details. Also refer to this article with the same title published in IOUG’s Journal “SELECT” – Fourth Quarter 2007

It is also highly recommended to follow best practices as outlined on the Oracle Maximum Availability Architecture web site: http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm
Possible Scenarios

· Physical Corruption

· Logical Corruption

· 3rd Party Vendor Upgrade or Batch Job Reversal

· Untested Hot Fix or Patch

· Stress Testing

· Testing Oracle Upgrades

· After failover, reinstate primary

Physical Corruption on a primary database really can’t be transmitted to the standby if the data files exist on a separate file system and don’t participate in hardware-level mirroring. With db_block_checking and db_block_checksum enabled on the primary and db_block_checksum on the physical standby, it can detect any physical corruption before applying redo. There is always the warning when enabling db_block_checking and/or db_block_checksum as it may overload an already CPU-intensive environment. Be careful to monitor before putting these settings into a production environment. If the physical corruption is extensive enough to prevent the primary database from being open then failing over to the physical standby would be the best option.

To fix logical corruption using a physical standby the corruption needs to be widespread enough to warrant the time and trouble it takes to extract the data from the physical standby and import it back into production; multiple tables, multiple schemas, etc. Any 3rd party vendor upgrade or batch job (such as an incorrect payroll run) could be dealt with using the physical standby to manually reverse SQL changes to data.

Any kind of testing could be done using the physical standby with the latest copy of production data that may not be available in the testing environment. Testing an Oracle upgrade and/or change in something as simple as init.ora parameters using a physical standby would give you the least amount of downtime. There is always a certain amount of unpredictability with hardware, operating system changes or when migrating to a RAC or ASM instance. You would make the change to the physical standby first, open it in read/write mode, test for functionality and revert by using FLASHBACK to the physical standby before attempting the same changes on the primary instance.

Corruption, patch reversal, upgrades, testing scenarios
The only disturbance to the primary during this scenario would be the lack of protection against data loss on the primary during the testing. This limitation is removed with 11g, see Snapshot Standby in a later section. With the physical standby being actively used for testing it would have to be flashed back to the restore point, a delay might occur depending on the amount of archivelogs produced on the primary during testing. A delay in shipping might occur if you temporarily disabled the DATA GUARD broker unless there is an additional log_archive_dest on this same node to receive the logs. See Metalink Note 434164.1 Data Guard Redo Log Repository Example to create what is known as an ARCHIVE LOG REPOSITORY.
Start the process by canceling Redo Apply on the physical standby and taking a guaranteed restore point:

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

STANDBY> CREATE RESTORE POINT HOTFIX1 GUARANTEE FLASHBACK DATABASE;
The above command sends all current data from the production instance and then stops the REDO APPLY process temporarily to the physical standby where testing will occur. All redo shipping to other archive destinations from the primary in the same configuration are not affected by this interruption. Oracle Support recommended turning off the DATA GUARD when using SQL commands to make changes to the configuration, otherwise it will enable the archive destination automatically.

PRIMARY> ALTER SYSTEM ARCHIVE LOG CURRENT;
PRIMARY> ALTER SYSTEM SET DG_BROKER_START=FALSE;
PRIMARY> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;
Activating the Physical Standby into Read/Write mode allows us to run the testing on an actual working copy of the primary database where we can change data, run batch jobs, change init.ora parameters.

STANDBY> ALTER DATABASE ACTIVATE STANDBY DATABASE;
At this point the database thinks it is now the PRIMARY, be sure and defer any cascading archive destinations that receive transactions from this database so that the testing DML is not propagated to other standbys or back to the primary:

STANDBY> select * from v$database;

DATABASE_ROLE DB_UNIQUE OPEN_MODE PROTECTION_MODE SWITCHOVER_STATUS

PRIMARY STBY MOUNTED UNPROTECTED SESSIONS ACTIVE

STANDBY> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;

STANDBY> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

STANDBY> ALTER DATABASE OPEN;
At this point on the physical standby execute any testing DML, export wanted data from the standby to import into production, apply hot fix, patch or stress testing on the physical standby. There isn’t any current protection against data loss on the primary database at this point unless you have a second physical standby. If a switchover or failover needs to occur, you would need to flashback the standby to the beginning restore point (HOTFIX1), convert it back to a physical standby and recover any logs that were generated during the testing. Those steps are outlined below. Drop the restore point when you are sure it is no longer needed:

STANDBY> STARTUP MOUNT FORCE;

STANDBY> FLASHBACK DATABASE TO RESTORE POINT HOTFIX1;

STANDBY> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

STANDBY> STARTUP MOUNT FORCE;

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT LOGFILE DISCONNECT;

STANDBY> select * from v$database;

DATABASE_ROLE DB_UNIQUE OPEN_MODE PROTECTION_MODE SWITCHOVER_STATUS

PHYSICAL STANDBY STBY MOUNTED MAXIMUM_PERFORMANCE SESSIONS ACTIVE

STANDBY> DROP RESTORE POINT HOTFIX1;

Enable the LOG_ARCHIVE_DEST_STATE_2 on the primary database (or whichever is appropriate to restart the Redo Apply on the standby):
PRIMARY> ALTER SYSTEM SET DG_BROKER_START=TRUE;
PRIMARY> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Reinstate failed primary scenario

Whenever the primary instance has been switched over to a standby database it is easiest to reinstate the failed database back into the primary role by making it a Physical Standby until all of the logs that were generated while it was unavailable have been applied. In previous versions you would have to restore/recover the entire database before being able to switch back to the original primary instance. With this scenario you only are having to apply changes (archivelogs) that have occurred after the transition event.

On the new primary instance (which used to be the standby) query to find the correct SCN:

PRMY> SELECT TO_CHAR(STANDY_BECAME_PRIMARY_SCN) FROM V$DATABASE;
This scenario assumes that the data files on the primary are recoverable. Steps to run to convert the old primary into a new physical standby to allow all redo to be applied since the failover for eventual transition of this standby back into the production instance:

STBY>SHUTDOWN IMMEDIATE;

STBY>STARTUP MOUNT;

STBY>FLASHBACK DATABASE TO SCN <STANDBY_BECAME_PRIMARY_SCN>;

STBY>ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

STBY>SHUTDOWN IMMEDIATE;

STBY>STARTUP MOUNT;

STBY>ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT CONTROLFILE DISCONNECT;
Once you have determined that all outstanding redo has been applied switch back to the primary. This would be considered a SWITCHOVER which is a planned event with no data loss as a result. First stop all job processing and client sessions. You can make sure there is no gap in the amount of redo applied from the primary database to the standby by issuing the following statement on both databases they should match:

SQL> SELECT THREAD#, MAX(SEQUENCE#)

FROM V$LOG_HISTORY GROUP BY THREAD#;

The following statement executed on the Standby database indicates the number of redo blocks applied for a specific log sequence (see block#), run it several times to show the progress:

STANDBY> SELECT PROCESS, SEQUENCE#, THREAD#, BLOCK#, BLOCKS, TO_CHAR(SYSDATE, 'DD-MON-YYYY HH:MI:SS') TIME
from V$MANAGED_STANDBY WHERE PROCESS='MRP0';

PROCESS SEQUENCE# THREAD# BLOCK# BLOCKS TIME

MRP0 2125 1 278912 307200 30-MAY-2007 09:54:54

PROCESS SEQUENCE# THREAD# BLOCK# BLOCKS TIME

MRP0 2126 1 1 307200 30-MAY-2007 09:55:49

Start the switchover process by issuing the following statement waiting until it completes to continue on to the next step:

PRMY> ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY WITH SESSION SHUTDOWN;
Redo Apply is not current running.

STBY> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

STBY> SHUTDOWN IMMEDIATE;

PRMY> STARTUP MOUNT;

PRMY> ALTER DATABASE OPEN;
Now Redo Apply is now traveling the other direction with the original back as the Primary database. Note: Beginning with Oracle Database 10g Release 2, you can open the database which would omit the following steps if the standby database had not been opened read-only:

SQL>SHUTDOWN IMMEDIATE;
SQL>STARTUP MOUNT;
All testing outlined above was done on a 10.2.0.3 Enterprise Edition of Oracle Database with a single primary, single physical standby and single logical standby in the DATA GUARD configuration in Maximum Performance mode using Real-Time Apply.

11g -Differences & features

snapshot database

There is the introduction of a third version of a standby database in 11g called a Snapshot Database. A Snapshot Database is converted from a physical standby with a snapshot, designating that all data has been frozen at a certain point of time. Redo from the primary is received and archived but it is not applied. This makes using a physical standby for the scenarios in the previous sections for 10gR2 easier as the steps are now combined into the single feature known as Snapshot Standby receiving redo while functioning as a reporting database (read-only) or a testing environment (read/write). It also reduces the number of steps (SQL commands) executed. It also reduces the lack of protection due to logs not being shipped while running the scenarios. Flashback Database must be enabled with a flash recovery area on the standby. It takes a guaranteed restore point, opens it up in read/write mode while still receiving redo with a single command (actually more because you may have to cancel any managed recovery in progress, shutdown after conversion and bring it back up).
STBY> ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;

Then a single command returns it back to a physical standby flashing it back to the guaranteed restore point (after shutting it down and mounting).
SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
It will have to be shutdown and mounted again with managed recovery restarted before it will resume its full functionality of a physical standby database.

Active data guard and rman

Now you can have your cake and eat it too! A physical standby open for reporting that is current with the primary database. To enable ACTIVE DATA GUARD it is simply opening the database before starting managed recovery. If you try to update data in the physical standby you will get ORA-16000: database open for read-only access.

In 10gR2 there were several issues associated with using RMAN in a DATA GUARD environment due to the DBID being identical on the primary and any physical standbys (see the following code). In previous versions it was recommended to label backups with a tag appending the nodename since RMAN couldn’t distinguish between them. In 11g RMAN tracks all filenames within the catalog. This allows you to backup a tablespace, datafile, archive log or control file on a physical standby and restore to a primary or vice versa, with every file or backup labeled with a DB_UNIQUE_NAME. It also provides faster incremental backups on the physical standby with Block Change Tracking enabled. In 10gR2 there were performance problems when using the physical standby to offload RMAN backups.
RMAN> connect target / ;

connected to target database: 11GDG (DBID=1794436946)

RMAN> connect auxiliary sys/password@11gW;

connected to auxiliary database: 11GDG (DBID=1794436946, not open)
RMAN> SET DBID 1794436946;

CONFIGURE DEFAULT DEVICE TYPE TO SBT FOR DB_UNIQUE_NAME 11gW;

See Chapter 11 "Using RMAN to Back Up and Restore Files"of the Data Guard Concepts and Administration manual.

Check out Metalink Note:331924.1 RMAN backups in Max Performance/Max Availability Data Guard Environment for the init.ora parameter _log_deletion_policy=’ALL’ (recommended for 10g)

logical standby
In 11g there are two options when creating a LOGICAL STANDBY Database. The first option allows
LOGICAL> ALTER DATABASE RECOVER TO LOGICAL STANDBY db_name;

When using the logical standby for disaster recovery (to failover and switch back and forth with primary) then the following command is issued instead:
LOGICAL> ALTER DATABASE RECOVER TO LOGICAL STANDBY KEEP IDENTITY;

This keeps the same DBID and DB_NAME as primary. A logical standby is not a guaranteed copy and there may missing data (incompatible datatypes), additional R/W schemas, MV’s and/or indexes in the logical standby.

real application testing

Real Application Testing consists of two major components: Database Replay and SQL Performance Analyzer (SPA). Using these utilities in a Data Guard implementation makes sense because there is the stipulation that must be able to restore the database at the correct SCN by point-in-time recovery, flashback, and import/export. This can easily be done with the SNAPSHOT database.
other data guard Features and notes
1. Flashback Transaction

Flashback Database was cool but who wanted to flash back the “entire” database or even take the time and trouble to flash back all of the tables involved. Now you have the option to identify the failed payroll run/data load to selectively turn back. This means the database is still online for all the other users.
2. Fast Start Failover for Maximum Performance Mode with the added ability to specify certain conditions for Fast Start Failover - more control for failovers than just the loss of a network ping.

3. Compression of Redo Traffic
Providing better performance for remote datacenter traffic and large archive logs.
4. SSL Authenticated Redo Sessions

This provides more security when using network access that is not secured and/or dedicated. Archive logs are vulnerable and could be data mined.
5. Logical Standby – SQL Apply Improvements

6. Lost-Write Detection Using a Physical Standby Database - Lost-write database corruption happens when the I/O subsystem has acknowledged the completion of a block write but in actuality the write did not make it to disk. This type of corruption is detected by DATA GUARD comparing SCNs of blocks in redo on primary to the SCNs of blocks on the physical. A detection halts the managed recovery process on the standby and recovers to the consistent SCN. At that point it is recommended to failover because the physical standby is currently the most consistent. It is an init.ora parameter DB_LOST_WRITE_PROTECT (typical, full, none).
7. Heterogeneous Environment - Mixture of 32-bit Linux and Windows Physical Standbys the following error occurred: ORA-16191: Primary log shipping client not logged on standby. The password file was interpreted with a different case than what it was created with. This was fixed by turning off the case sensitivity option by changing init.ora parameter SEC_CASE_SENSITIVE_LOGON=FALSE. Create password files on both servers using the same password and pass ignorecase=Y to orapwd utility.
live database duplication over network

RMAN 'Duplicate Database' Feature in 11G Doc ID: Note:452868.1

Steps on the standby server:

1. Install the Oracle Binaries
2. Setup Oracle Network files – listener.ora, tnsnames.ora, sqlnet.ora
3. Create spfile - DBNAME (this is the only parameter needed as per the documentation but you may experience various errors requiring more parameters depending on the situation)
4. Password file same password or copy from primary when on identical operating system versions.
5. Create any file directories needed.
6. Start the standby database – startup nomount
7. RMAN commands are run from the primary server – see example script as follows.
rman
connect target sys/password@PRIMARY;
connect auxiliary sys/password@STANDBY;
run
{
allocate channel prmy1 type disk;
allocate auxiliary channel stby type disk;
duplicate target database for standby from active database

spfile parameter_value_convert 'PRIMARY','STANDBY'
set audit_file_dest ‘/u01/app/oracle/admin/11gDR/adump’
set dispatchers ‘(PROTOCOL=TCP) (SERVICE=11gDRXDB)’

set db_unique_name ‘11gDR’
set db_file_name_convert ‘/11g/’, ‘/11gDR/’
set log_file_name_convert ‘/11g/’, ‘/11gDR/’
set control_files ‘/u02/oradata/11gDR/control_11gDR.ctl’
set log_archive_max_processes 5
set fal_client ‘11gDR’
set fal_server ‘11g’

set standby_file_management ‘AUTO’

set log_archive_config ‘dg_config=(11g,11gDR)’
set log_archive_dest_1 = ‘service=11g LGWR ASYNC valid_for=(ONLINE_LOGFILES,PRIMARY_ROLE) db_unique_name=11g’;

}
Testing for the 11g Version 11.1.0.6.0 were done on several different servers: Linux 64-bit Red Hat 4 , Linux 32-bit Red Hat 4, Windows Server 2003 32-bit.

1

#321

