Database Administration

SIZE MATTERS: Techniques for handling
ever-expanding databases
Kevin Loney, BarclayCard US

Information Lifecycle Management (ILM), physical database architecture choices, and performance planning are critical to the design of databases that can withstand incoming floods of data. This presentation will provide case studies, strategy recommendations, feature reviews, and technical approaches critical to supporting business processes effectively even as database size rapidly escalates. Features introduced with Oracle 11g can be combined with database design practices to simplify the management of growing volumes of aging data

The flood is here

According to the 2005 WinterCorp survey, the average data warehouse in that survey increased in size from 4 TB to 9 TB between 2003 and 2005. During that same time period the size of the largest data warehouse in the survey increased more than threefold. Three years later it is apparent that the pace of growth in databases is increasing to the point at which it has become a flood – with increasingly large databases generating new challenges for DBAs, developers, and database architects. At its heart this is an architecture issue – because the performance of the application cannot be allowed to negatively impact the performance of the application it is supposed to be supporting.

We don’t need to wait for the next survey to know where the trend is headed. The rates at which data is inserted into databases increases – sometimes geometrically – while older data is maintained, replicated, and kept online. The result is that the average data warehouse size will likely be well over 10 TB this year – not including the extra copies maintained for backups, read-only reporting, and disaster recovery.

Meanwhile, the business process the database was first created to support are still trying to run. In most OLTP applications those processes use roughly the same amount of data they used at the start – querying codes tables for lookup values, inserting rows into transaction tables and so forth. They must be able to continue to function without business impact – and in fact, they must be able to function better and faster than before in order to support growth in the business.

We thus have a collision between what the business needs the applications to do and what the underlying systems can do in terms of storing and providing the data for the application. This impasse has led to a series of potential solutions across the environment, database, and application tiers. In the following sections of this paper you will see how those options can address the concerns brought on by ever-increasing database sizes. Regardless of the solutions you choose it is critical that the guiding principle be the long-term health of the business process that uses the application and database; any other approach may be successful tactically but will create problems as time passes.

Environment Design Issues

The key factor in database disk accesses is the throughput – how much can you read, and how fast can you read it? The storage area available is important but is secondary to the throughput rates. That philosophy is counter to how disks are sold (and often how their costs are assigned to project budgets). If you only look at the cost per GB or cost per TB then you are not seeing the full picture of the cost and worth of the available storage.

ILM (Information Lifecycle Management) solutions are available at the hardware level. In general terms, you can purchase disk storage in multiple tiers. Tier-1 storage will be the best-performing and most expensive storage. Tier-2 storage will cost less and will not perform as well, and Tier-3 will be the designated area for archival data with the lowest cost and the slowest I/O performance. The intent is that the database files will be stored based on their importance to the application, with the most critical files on Tier-1 storage and less critical or archival data stored on the other tiers.

There are some pitfalls to be aware of in the hardware ILM approach. First, you need to remember that there will be processes (such as backups and replication) that may need to access all of the data in the database. How will those perform if you are storing the bulk of your data on lower tier disks? You may need to identify the files in the database that are largely read-only, or whose backup schedules may be altered.

Second, the hardware solution will not solve all of the application problems. If you can address issues at the database level (through effective partitioning) and the application level (through better use of the database objects) you can then take advantage of the hardware ILM solutions in a much more cost-effective manner. Simply relying on hardware-level ILM will not yield the greatest benefit for your investment.

Some hardware solutions service multiple infrastructure needs. For example, a hardware-level replications technology may be used to migrate data to different tiers on a regular schedule while also replicating that data to a different server. The second server can then be used as a reporting database or as part of a disaster recovery solution.

Database Design Issues

Every large-scale ILM solution has to consider how the data is partitioned within the database. It must also consider how the business uses the data in each partition, and those considerations must cross tables.

Let’s consider the example of a typical OLTP invoicing system. In such a system we would expect to find a Customers table, and an InvoiceHeaders table, and an InvoiceLineItems table. All three of those tables are needed to retrieve the information related to any invoice that has been previously entered into the system – who did we generate the invoice for, what is the invoice status, and what are the details.

How is that data partitioned? While the InvoiceHeaders table would be expected to have a DATE datatype field as part of its core set of attributes, the others may not. The Customers table may be partitioned by geographic region, and the Invoice Details table may be partitioned by some other attribute.

The problem with that approach from a design and maintenance standpoint is that you now have three independent partitioning schemes for three interrelated tables. There is a single business process (generating invoices) that uses all three tables, but there is not a single strategy you can implement to partition these three tables in unison. As a result, your maintenance activities related to the aging of data will be complex – and often they are just bypassed entirely and the tables grow with no hope of effective ILM. After all, we can’t get rid of a partition unless we know its data is no longer being used.

Oracle 11g offers expanded partitioning options that can help address these issues. First, Oracle 11g offers extended composite partitioning. While in the past composite partitions have been limited to options such as range-hash or range-list or range-range, there are essentially unlimited composite partitioning options available as of Oracle 11g. You can create partition-subpartition combinations such as list-list or list-range – whatever combination makes the most sense for your data.

Two significant enhancements to partitioning in Oracle 11g are reference partitioning and interval partitioning, both of which have implications for database-level ILM.

Reference partitioning allows you to create a partition based on a column that is not in the table being partitioned, but rather is a foreign key reference to a different table. Consider the invoices example again. If we assume that the InvoiceHeaders table has an INVOICE_DATE column, then we can range-partition InvoiceHeaders by the INVOICE_DATE column on a monthly basis. Suppose the InvoiceLineItems table does not have a DATE datatype column – but it has a foreign key on the InvoiceNumber column back to the InvoiceHeaders table. How can we partition it?

In Oracle 11g, you can use a reference partition to solve this dilemma. The table creation for the InvoiceLineItems table is shown here:

create table InvoiceLineItems

(

 InvoiceNum number not null,

 Line_id number not null,

 Sales_amt number,

 constraint fk_inv_01

 foreign key (InvoiceNum)

 references InvoiceHeaders

)

partition by reference (fk_inv_01);

When you create the InvoiceLineItems table it will be partitioned by the same column as is used to partition the InvoiceHeaders table, even if that column (INVOICE_DATE) is not in the InvoiceLineItems table. The two will be partitioned in sync.

This may seem to be a minor advance but it is highly significant for effective ILM. You will need to be able to age related data from multiple tables in a consistent fashion. You will need to be able to remove data without worrying that there are dangling references that will invalidate referential integrity along the way. By using reference partitions you are unifying the ways in which the data is divided across multiple tables, and that significantly eases the maintenance burden.

Taking this one step further, you should evaluate how you store your partitions. In the past, with databases that featured one or two large tables, it was common to find each of those partitions stored in its own tablespaces. For example, for the year 2007 you might have:

InvoiceHeaders table

Partition IH_200701 is in tablespace IH_200701

Partition IH_200702 is in tablespace IH_200702

Partition IH_200703 is in tablespace IH_200703

Partition IH_200704 is in tablespace IH_200704

Partition IH_200705 is in tablespace IH_200705

Partition IH_200706 is in tablespace IH_200706

Partition IH_200707 is in tablespace IH_200707

Partition IH_200708 is in tablespace IH_200708

Partition IH_200709 is in tablespace IH_200709

Partition IH_2007010 is in tablespace IH_200710

Partition IH_2007011 is in tablespace IH_200711

Partition IH_2007012 is in tablespace IH_200712

For a Payments table in the same database you would have a similar structure:

Payments table

Partition PAY_200701 is in tablespace PAY_200701

Partition PAY_200702 is in tablespace PAY_200702

Partition PAY_200703 is in tablespace PAY_200703

Partition PAY_200704 is in tablespace PAY_200704

Partition PAY_200705 is in tablespace PAY_200705

Partition PAY_200706 is in tablespace PAY_200706

Partition PAY_200707 is in tablespace PAY_200707

Partition PAY_200708 is in tablespace PAY_200708

Partition PAY_200709 is in tablespace PAY_200709

Partition PAY_200710 is in tablespace PAY_200710

Partition PAY_200711 is in tablespace PAY_200711

Partition PAY_200712 is in tablespace PAY_200712

Why use this approach for all databases?

When you partition more and more tables, you will quickly end up with more and more partitions. What is the benefit of storing each of them in a separate tablespace? It’s not a performance benefit – I/O improvements and optimizer enhancements are well-documented and can mitigate the costs associated with any increased I/O cost within a tablespace. Although it does not generate a performance benefit it does have a cost – it makes maintenance harder. Scripting becomes more error prone, backups and restores become more complicated, and the tablespace strategy does not support ILM easily.

A simpler method is to group the partitions together by time. Age the partitions from related tables together by storing them in the same tablespaces. In this model:

InvoiceHeaders table and Payments table

Partition IH_200701 and Partition PAY_200701 is in tablespace Month_200701

Partition IH_200702 and Partition PAY_200702 is in tablespace Month_200702

Partition IH_200703 and Partition PAY_200703 is in tablespace Month_200703

Partition IH_200704 and Partition PAY_200704 is in tablespace Month_200704

Partition IH_200705 and Partition PAY_200705 is in tablespace Month_200705

Partition IH_200706 and Partition PAY_200706 is in tablespace Month_200706

Partition IH_200707 and Partition PAY_200707 is in tablespace Month_200707

Partition IH_200708 and Partition PAY_200708 is in tablespace Month_200708

Partition IH_200709 and Partition PAY_200709 is in tablespace Month_200709

Partition IH_200710 and Partition PAY_200710 is in tablespace Month_200710

Partition IH_200711 and Partition PAY_200711 is in tablespace Month_200711

Partition IH_200712 and Partition PAY_200712 is in tablespace Month_200712

The related tables have their related partitions stored in the same tablespace – all of the February data from both tables is stored in the same tablespace. We can now administer a single tablespace for all data related to a single month. We can easily determine how often that month’s data is being used (by monitoring the I/O statistics on that tablespace’s datafiles) and we can make the entire tablespace read-only. This model of tablespace management is much more scalable than the prior model.

Another new partition type available with Oracle 11g is an interval partition. In interval partitioning you do not specify the specific range values for each partition; instead, you specify the duration of the interval. That is, instead of specifying that partition 1 ends on January 31 and partition 2 ends on February 29, you specify that each partition is one month long. When a new row is inserted, Oracle will determine which partition to place the row in based on the interval definition. If you have not created a partition for that month the database will automatically create a new one.

Use interval partitions with caution. You will need to perform the data value constraint checks yourself prior to inserting the row – and if you do not then you may end up with unwanted partitions that were created simply because a data entry person mistakenly entered “2098” for a year instead of “2008”. The interval partitioned version of the InvoiceHeaders table is shown in the following listing:

create table InvoiceHeaders

(

 InvoiceNum number,

 CustomerNum number,

 Invoice_Date date

)

partition by range (Invoice_Date)

interval (numtoyminterval(1,'MONTH'))
(

 partition p0701 values less than (to_date('2007-02-01','yyyy-mm-dd'))

);

Note that if you rely on interval partitioning automatically creating your partitions for you then your application developers cannot rely on consistent partition names – for Oracle will create a system-generated name for each partition it automatically creates.

Why are we playing divide-and-conquer with the data? If we do not partition the data and eliminate the oldest data then the database will have to process more data each time it performs large-scale operations.

Here are the results from 20 consecutive weeks of monitoring at the database level. In this listing we’re just looking at one statistic: the wait time for the db file scattered read event. This wait event occurs during full table scans. What is the average wait time, in milliseconds for this event?

	Week 1
	7 ms

	Week 2
	7 ms

	Week 3
	8 ms

	Week 4
	9 ms

	Week 5
	9 ms

	Week 6
	9 ms

	Week 7
	10 ms

	Week 8
	10 ms

	Week 9
	10 ms

	Week 10
	11 ms

	Week 11
	11 ms

	Week 12
	11 ms

	Week 13
	12 ms

	Week 14
	12 ms

	Week 15
	12 ms

	Week 16
	13 ms

	Week 17
	14 ms

	Week 18
	14 ms

	Week 19
	15 ms

	Week 20
	15 ms

The data is so straightforward we don’t even need to graph it out. Looking across these weeks, with a consistent load each week, the database is getting slower. Each week the wait time for the db file scattered read events is the same or greater than it was the week before. The number never goes down from one week to the next. Given that the I/O environment is performing reasonably (sub 15 ms response time), why is the database getting slower? It’s getting slower because rows keep being inserted, and none are being deleted, and full table scans are reading more blocks than they used to. Even if the number of full table scans does not increase the number of reads issued during a full table scan increases, resulting in an increased number of waits and an increased latency during each wait.

In this case the average wait time for each read has doubled in 20 weeks. This is not a problem with the environment or the application – the database is slowing down because it is processing more data. Adding memory to the SGA buffers is not likely to have any significant impact here if the table is too large to completely cache. The performance issues appear to be designed into the application database; it will get slower and slower as more data is read during full table scans.

Each week the performance is just slightly worse than it was the prior week. Seen across the weeks and months the trend is obvious. At this point the trend is linear, with small increments each week. If and when this trend accelerates the database performance will impact the business performance; and the I/O activity generated by the full table scans may impact the I/O performance for all I/O in the database. To see the impact on the overall database performance, see the wait times for the db file sequential read events (which are associated with single-block reads such as the table accesses that follow index lookups):

	Week 1
	2 ms

	Week 2
	2 ms

	Week 3
	2 ms

	Week 4
	2 ms

	Week 5
	2 ms

	Week 6
	2 ms

	Week 7
	2 ms

	Week 8
	2 ms

	Week 9
	3 ms

	Week 10
	3 ms

	Week 11
	3 ms

	Week 12
	3 ms

	Week 13
	3 ms

	Week 14
	3 ms

	Week 15
	4 ms

	Week 16
	4 ms

	Week 17
	4 ms

	Week 18
	4 ms

	Week 19
	4 ms

	Week 20
	4 ms

The single-block reads should be doing about the same amount of work in Week 20 that they did back in Week 1 – but they are doing it slower. At 5 ms for a single-block read wait the system is probably performing acceptably – but it is trending worse and that trend will continue unless something is done to remediate the environment, the database, or the application.

Using the Information Lifecycle Management Assistant

As of Oracle 11g you can use the ILM Assistant tool to help manage the information lifecyle. Built using Application Express, the ILM Assistant tool (available you’re your Oracle software installation) prompts you for information about the data – its age, its retention time, the duration for each stage of its lifecycle – and maps that against the storage you identify (including the cost per GB). Based on your input the ILM tool then generates recommendations and scripts for implementing those recommendations. The tool does not execute the scripts.

While the ILM Assistant is helpful as a way of collecting and categorizing information about your data lifecycle, you will still have to do some significant work to use it effectively. For example, you will need to first understand how each of the tables’ data is used, and how that usage changes over time. In some cases that answer will be simple but for complicated and custom legacy applications there will be no easy answer. The usefulness of the tool is thus based on how well you already know your data; the tool will not do that work for you.

The financial justifications for the recommendations from the ILM Assistant are derived from the use of lower-cost storage tiers for less-used data. However, those savings may be hard to realize – for you may have already spent the capital costs for the tier-1 storage. Moving those datafiles to tier-2 storage may involve new capital purchases (for the tier-2 environment); the tier-1 devices that are then freed up may have already been depreciated.

Note that moving data from one storage tier to another may well lead to an outage for the application. Ideally these moves occur when the affected tablespaces are largely in read-only state anyway, but the potential impact on the availability of the tables must be taken into account during the ILM planning process.

Application Design Issues

Take your application’s entity-relationship model and generate a schema in which no tables have any rows in them. Now hand that schema off to developers and ask them to design and application that meets the business’s performance needs now and into the future. While that development practice is common, you can see how it is prone to failure. Only a few small changes are necessary to make it worthwhile –

1. Tell the developers that they should assume all non-codes tables have at least 1 billion records in them.

2. Note that every index on a table slows down all DML operations on that table by a factor of 3.

3. Specify that all performance tests have to succeed in one-twentieth of the allotted time.

Given those requirements the application developers and architects would study and optimize every data access path. They would restrict access to the largest tables to only controlled processes. They would not allow users to initiate queries that could generate full table scans. They would pre-aggregate and pre-join data so the users would query data that was already physically stored in a form that is as close to their needs as possible.

Which is to say, they would use materialized views and stored procedures for their main data access methods.

Often materialized views are added after the fact. Once the application has grown to a significant size a layer of materialized views is added over the largest tables, and the query rewrite capabilities of the optimizer are used to encourage the materialized views to be used in place of the underlying tables. From a design standpoint, that is exactly backward from the optimal approach. Rather than using materialized views as an after-the-fact solution to a performance problem, they should be part of the initial design.

For example, you could create a materialized view that presents the most recent year’s worth of data. The application would be written to query that materialized view explicitly. What if users needed to access the data that was older than the current year? All data access to the older data would be tightly controlled and would go through stored procedures. In this manner, users would not have direct access to the underlying table (since the stored procedure’s queries would run under the stored procedure’s owner’s privileges).

This design approach is not without its challenges – for example, you would need to code the stored procedures used to access the old data, and you would need to schedule and monitor the refreshes of the materialized views. But the benefits of this approach are significant. The approach isolates the older data from the newer data because the processes that access the older data (ad hoc reporting, historical trend analysis) are separate from the processes that access the newer data (transaction entry, operational decision making). As the database grows in size the areas of greatest increase will not impact the operational reporting objects (the materialized views) but rather the older data. Since the oldest data is no longer directly accessed by the application users it is more easily moved, modified, and maintained.

As of Oracle 11g, you can use a new option for data movement. In past releases you could not use the transportable tablespace option of Data Pump for a partition; you had to move a self-contained set of data. That process often involved exchange partition operations on the source system just to create a version of the table that could be transported.

As of Oracle 11g you can transport just one partition – so you do not have to do the exchange partition operation in the source database. In the target database during the DataPump import you can use the new “partition_options=departition” option of DataPump. When the data is imported into the target database Oracle will create a new table from the partition – which you can then load into the target table via the exchange partition option. This approach may simplify your data movement process as your database grows in size.

Going Forward

Throughout this paper there have been several consistent themes.

1. The tools related to ILM are out there but you will have to work to get the most out of them.

2. You need to plan for your data to age. That should be part of your database and application planning process.

3. You need to know how the data in different tables can be aged together.

4. Your application design and database design need to account for the vast bulk of data in the tables not being actively used by the application.

5. Your ILM solution must span all three areas: the application, the database and the hardware.

The data flood is coming.

Actually, it’s already here.

2

Paper #330

