Database Administration

Getting Started Optimizing Oracle Performance

Craig A. Shallahamer, OraPub, Inc.
Latest version available at http://www.orapub.com
Abstract

Even the documentation states, “The Oracle server is a sophisticated and highly tunable software product.” Then doesn’t it follow that learning how to diagnose and optimize performance should be a complex, daunting, and overwhelming challenge? Absolutely not! Throughout my 20 years of researching, writing, teaching, and consulting I have developed a number of methods and techniques that have allowed literally thousands to learn how to make complex Oracle server tuning simple and straightforward. This paper is aimed at introducing new Oracle DBAs to the world of practical performance diagnosis and resolution. I will start by introducing the concepts and key points, surrounding them with proven methods. There will also be a couple case studies and examples used to demonstrate how to successfully diagnose and set a path towards optimizing performance. Publicly available tools and methods will be used throughout the paper.

Background

Oracle performance firefighting is something I love to do and have been doing for many years now. I started as an Oracle forms developer, but that didn’t go so well. Then I got involved with the Oracle CASE method and developed entity-relationship diagrams for customers. That was OK, but didn’t really thrill me. Then I tried Oracle Financial implementations. While I enjoyed working with my customers, it really didn’t satisfy my inherent thirst for technical problem solving. Then I attended a performance class back in 1991 and I knew what I really wanted to do… fight unbelievable crazy Oracle performance fires. And that’s what I did and continue to do. Week after week I (and my colleagues) would fly into insane Oracle performance situations and bring calm and steady performance. And I loved it!

While I have spoken, written, and teach about fighting Oracle performance fires [RPM, RPMI], I have never written a short introductory paper on the subject. Probably the closest paper is entitled Total Performance Management [TPM], but that was written as I was formulating my methods.

Method is key. Over the many years of fighting Oracle performance fires, I have developed a number of methods and techniques with an attempt bring calmness to crazy performance situations. While this is an introductory topic in my firefighting classes and seminars, my goal for this paper is to consolidate the key elements to help get you going and enjoy the satisfying world of Oracle performance firefighting!

This is not going to be a deeply technical paper. We just don’t have the time or space for that. What I want to do in this paper is to help you develop a framework of methods and techniques and understanding so you can quickly appropriate, integrate, and assimilate Oracle knowledge and use that to fight performance fires. It’s been demonstrated to me over and over, that if you have a solid framework you operate from, you can quickly learn and apply knowledge in amazing ways. Sure other people may know more sexy technological stuff, but it’s the person who can use the fundamentals and communicate them to management who will have a long and exciting career in front of them.

There are a few key elements to performance firefighting and I’m going to comment on each of these in this paper with a couple case studies included. If you want to know more, please visit my web site. I keep all my papers on-line, which are downloadable for free and you can also see when and where I will be teaching. I teach all over the world and thoroughly enjoy doing it! So let’s get started.

The Key Elements

As I mentioned, there are a few key elements you must master. Here is a list of the first things I teach my students:

OraPub’s 3-Circle Analysis Method. This is a sure-fire way to methodically diagnose, analyze, and structure your analysis, and communicate all of this to both technical and non-technical people. I would say that besides understanding Oracle’s technology, this is the most important aspect of Oracle performance firefighting.

Oracle’s Wait Interface. Oracle tells us where the pain resides. If you learn how to listen and understand Oracle’s language you’re well on your way to quick pinpoint diagnosis.

Oracle Response Time Analysis. The more we can quantify the user’s experience the better. Basing our analysis on time is one way to “feel the users pain” and helps us to truly improve performance, not just think or feel like we are doing a good deed for the day.

Tools That Enhance Your Work. Whatever tools you use, they must embrace your methods and preferences. There are also a couple key requirements that I look for in any product.

Oracle Internals. Regardless of your methods, there is no substitute for knowing Oracle internals; process architecture, memory architecture, data architecture, etc. But using the methods or frameworks I’ve outlined above will help you quickly assimilate, understand, and use the raw technical information.

While there are other key elements, these are the main elements I teach my students. I have found that by mastering these five key elements you are off to a great start. Regardless of your Oracle expertise, I have personally found, anyone can be a better Oracle performance firefighter by embracing and using these elements.

OraPub’s 3-Circle Analysis Method

I first wrote about my 3-Circle Analysis method back in 1994 on a flight from Los Angeles to Sydney. I actually remember writing the paper entitled, Total Performance Management [TPM]. I called this method the Holistic Problem Isolation Method. Looking back, I really didn’t understand the power of what I was writing about. I would say that with the exception of Response Time Analysis, in regards to performance firefighting, I suspect the 3-Circle Analysis method will be my proudest contribution to the Oracle performance optimization community. Strangely, it is the most non-technical of all my Oracle related work. But perhaps that’s the genius of the method.

Take a close look at Figure 1. It is deceptively simple. In a nutshell, the database server is divided into three subsystems; Oracle, application, and operating system. Each subsystem is diagnosed separately and then in combination. There will be a clear overlap in resource consumption and/or contention… and that is the current performance problem.

Figure 1. OraPub’s 3-Circle Analysis Method. As unbelievable as it may seem, this method will guide your towards pinpoint diagnosis, reduce your changes of making a mistake, help you determine multiple solutions, help you structure your analysis, and help you effectively communicate your findings.[image: image1..pict]
The Benefits

The benefits of the 3-Circle Analysis method are many! First, you gain insights by analyzing the problem from three different perspectives. Many DBAs make the mistake by only diagnosing from one or perhaps two perspectives. Then when they present their analysis, they are shocked when, for example, the operating system team does not agree with their analysis. If they just analyzed the situation from all three perspectives their analysis would have been much stronger and received a better reception.

Second, by establishing and understanding the links or relationships between the three subsystems, you’re analysis is immeasurably strengthened. Plus you have anticipated the questions other will ask you! Understanding the subsystem relationships also help bring out inconsistencies or error in your analysis.

Third, you naturally will develop at least three different solutions… and probably many more. It is common to develop multiple solutions for each subsystem. Having many options is always better than one option. The realities of availability and performance make some changes not possible or must be scheduled. So I always prefer having multiple options to address the same issue.

Fourth, your analysis is very easily to document and present to others. You can use the 3-Circle method to structure your presentation, a formal document, or even a simple email. When I start a performance analysis, I create a blank document similarly structured to the 3-Circle method. For more information, see the Documenting Your Work section.

How To Use The Method (Case Studies)

It’s very straightforward. First focus on each of the three circles and then understand their relationship to each other. Where the overlap or the relationship is the strongest, that’s the bottleneck or the area that needs your attention the most.

Here is a quick example of how to use OraPub’s 3-Circle Analysis method. Suppose your Oracle response time analysis (detailed in Oracle Response Time Analysis section) shows Oracle processes are primarily waiting for multiple block requests outside of Oracle’s buffer cache (average of 20ms) and that Oracle server and background processes are consuming about 30% of the available CPU. Based upon this, I would expect to find a few SQL statements that are dominating physical IO reads (that is, read requests for blocks outside of Oracle’s buffer cache) consumption. So now I have a connection between Oracle and the Application subsystems. From an operating system perspective, you would anticipate finding an IO bottleneck. After checking the CPU, IO, memory, and network subsystems, sure enough, you’ll find there is a hot disk array. And if you do your homework, you’ll notice that it’s the tables receiving multiple block reads that are located on the hot disk array. So now you have a 3-way confirmed relationship, clearly showing issues and opportunities for performance improvement. Now this may sound overly simplistic, and it some ways it is. But the method, the process, and the steps you take are essentially the same regardless of your Oracle server configuration.

Here is another example with a little more detail.

Oracle Analysis. Suppose your Oracle response time analysis shows Oracle processes are primarily waiting to get a cache buffer chain (CBC) latch and Oracle processes are consuming all of the available CPU. (This is not uncommon with severe latch contention.) Cache buffer chains are used to answer the question, “Is the block in the buffer cache?” The cache buffer chains get stressed when the answer is predominately, “Yes, the block is in the cache.” Repeatedly asking this question and accessing the buffer in memory stresses the CPU subsystem. So CBC latch contention typically stresses the CPU subsystem. An Oracle-focused solution (and there are many) directly addressing the CBC issue is to increase the number of CBC latches by changing an instance parameter. This is a perfect example why you need know Oracle’s architecture. I would expect the OS to have a raging CPU bottleneck and the application SQL to be causing lots of logical IO, as opposed to physical IO. Logical IO stresses the CBC latches while physical IO stresses the IO subsystem.

Operating System Analysis. A quick OS analysis clearly shows the bottleneck to be CPU. The CPU subsystem is 90% busy on average with a run queue nearly always greater than the number of CPU cores (which means processes are having to wait for CPU resources). The IO subsystem is doing some real work, but there are no volumes busier than 60% and their response times are well under 10ms. There is no memory swapping. Network has been deemed out of scope (which is the case in many situations). An operating system focused solution is to get more CPU cycles for Oracle processes. There are many ways to go about doing this, for example, by looking for processes that do not need to be or should not be running during peak times.

Application Analysis. Running a simple “top SQL” report (such as sqls1.sql [OSM]), shows three statements clearly consuming the majority of the LIOs. Tune the SQL focused on reducing logical IO. It’s fine to reduce the physical IO, but the Oracle RTA and the OS analysis clearly support the logical IO SQL focus.

Performance Summary. The database server is clearly suffering from intense Oracle buffer cache management. This is supported by a CPU bottleneck, a very high level of logical IO SQL statements (that are easily identifiable), and Oracle processes waiting to get a latch, which is directly tied into buffer cache management. Fortunately, there are a number of solutions that should resolve the problem; from an Oracle, an application, and an operating system perspective.

Once you do this a few times, you’ll be amazed at how fast, thorough, and spot-on your analysis will be. Combined with a good understanding of the Oracle’s architecture and the ability quickly diagnose the OS, you’ll be able to do the same thing!

Documenting Your Work

One of the natural results of the 3-Circle Analysis Method is documentation. I look at documentation as a communication vehicle. By embedding the 3-Circle method into how I communicate, both written and verbal communication take-on the inherent 3-Circle benefits.

Upon completion of your analysis, it takes very little effort to create a small one paragraph email summarizing your work. Or for operating system-focused people, you can simply give them the Performance Summary and the Operating System Performance Analysis sections. The point is, you can scale and customize your communications very quickly. And all without sacrificing technical integrity.

Here is how I structure my analysis documentation.

Executive Summary. This section introduces the entire exercise and sets the stage so anyone can understand the importance of your task. Part of the Executive Summary is a further consolidation of the Performance Summary section. My focus is on the business and trying to communicate a highly technical situation to non-technical people. It’s easy to get too technical. Remember, this is probably the only section management will read. So make it simple, relevant, focused, and to the point. Do not try and impress people with your technical prowess in this section.

Objectives and Accomplishments. It is important to clearly establish what you are doing, why you are doing it, and what you accomplished. Clearly documenting this at the beginning of your analysis will provide a kind of roadmap to guide your work. Plus it is always nice to “check mark” all the things you’ve done!

Performance Summary. Clearly establish the relationships between the three subsystems. In each subsystem’s performance analysis section, I focus primarily on that circle’s area. But in this summary section, my goal is to clearly show their activity is strongly related, that is, correlated to each other. If I can establish this link, then my recommendations will not only attack the actual problem, but will be better received by others. I also list my recommendations in this section.

Oracle Performance Analysis. Do a thorough response time analysis to get a good quantitative understanding of the user’s experience. If you only focus on the wait events, you can make mistakes [MYTHS]. Make sure to do a complete response time analysis. I present how to do this in my Oracle Response Time Analysis [RTA] paper as well as during my performance classes and seminars [RPM,RPMI].

Application Performance Analysis. Focus on finding the most resource consuming SQL, programs, processes, and applications. I will also look for application specific features. For example, with the Oracle E-Business Suite, the batch manager is called the Concurrent Manager. I will always perform an analysis on the Concurrent Manager since it can dramatically affect performance.

Operating System Performance Analysis. This section contains details about the OS bottleneck. Make sure to investigate the CPU, memory, IO, and network subsystems. I usually include many screen shots and raw data.

Oracle’s Wait Interface

Oracle’s wait interface allows any DBA to clearly hear where Oracle’s pain resides. It’s like going into a doctor’s office and the doctor asking you, “Where does it hurt?” Oracle’s wait interface will faithfully answer this question. Done. Period. End of story. Now that you know where it hurts, you must understand what that actually means. For example, suppose you told your doctor your elbow hurt and he asked, “What’s an elbow?” Bad news, eh? While the doctor understood your words, he does not understand the physiology of the human elbow. The same hold true for Oracle performance analysis. Using the wait interface is just the beginning. You must understand Oracle’s physiology. That is, its process architecture, memory architecture, etc. Then you will be come the doctor!

A few words about Oracle’s wait interface are in order. Oracle goes beyond simple instrumentation. Oracle knows that just because significant time is spent in a specific code module, this does not mean that module is slow or consuming lots of resources. It could also mean the slow module is waiting or depending on a resource from some non-Oracle system. Take IO reads as an example. If a full-table scan module is consuming lots of time, is the full-table scan module developer at fault? Probably not. It’s more likely a combination of a massive table scan and a slow IO subsystem.

The wait interface helps both operating system analysts, Oracle kernel developers, and Oracle DBAs tell specifically where to look for performance optimization solutions.

There are many wait interface resources available today. Here is a list of just a few:

· Training. Oracle Performance Firefighting or Advanced Reactive Performance Management. These are my performance firefighting courses. I offer them in both in a 3-day hands-on discussion-thick format or a 2-day intensive seminar format. I really get deep into the wait interface including how it can mislead you (yes, it’s true) and some tricky caveats. For details, go to http://www.orapub.com .

· Book. Oracle Wait Interface: A Practical Guide to Performance Diagnostics & Tuning by Richmond Shee, Kirtikumar Deshpande, and K. Gopalakrishnan is a fantastic wait event resource.

· Paper. Direct Contention Identification Using Oracle Wait Interface. This paper continues to be updated, but in it’s original form it was the first published resource on Oracle’s wait interface. You can download it for free at http://www.orapub.com .

To become an expert Oracle performance analyst, you absolutely must gain a full understanding of Oracle’s wait interface and be able to arrive at multiple solutions for the most common wait events. It’s not that difficult and it’s absolutely imperative.

Oracle Response Time Analysis

RTA for short, Oracle Response Time Analysis allows DBAs to somewhat quantify a users experience. More than this, it also allows for the classification of wait time. A solid Oracle RTA enables an amazingly precision performance analysis that very easily connects your Oracle analysis with both the Application and Operating System analysis.

In 2001 I published the original Oracle Response Time Analysis paper [RTA]. It dawned on me that focusing only on the wait interface could result in a misleading performance analysis [MYTHS]. Since this time, many books and papers have expanded (some better than others) upon the original Oracle Response Time Analysis paper. My original paper is a great introductory resource and is freely available on-line. I also have a number of response time analysis based performance tools contained within my OraPub System Monitor (OSM) tool kit [OSM]. The key response time script is rtsysx.sql. Example output is presented in my Oracle RTA paper.

Here is an example of why you need to use response time analysis instead of a simple wait event analysis. Suppose the top wait event is cache buffer chain latch contention. If a DBA is hyper focused on reducing cache buffer chain latch contention time, he can be mislead into thinking that this will always improve the user experience, that is, response time. This is not the case. I provide more details about this situation below.

Response time analysis is not an Oracle invention or anyone else’s for that matter. It is a clearly defined definition used all the time in the arena of forecasting and capacity planning. Response time is simply service time plus queue time. For Oracle DBAs it is very convenient for service time to be CPU time (think: v$sysstat where name = “CPU used by this session”) and queue time to be Oracle wait time (think: v$system event). By combining classic response time analysis with Oracle, we can take a dramatic step forward in diagnosing performance problems, determining appropriate solutions, and communicating our findings.

Take a close look at Figure 2. I’ll go over this very fast. Figure 2 combines two figures into one. On the left is a classic response time graph. On the right is an extreme close up around an arrival rate of 0.9 trx/s. The vertical axis is time, that is, how long something takes. It could commit time, query time, average response time, etc. The longer the response time, the higher up the vertical axis we go. The key to understanding this graph is to not get too granular, keeping in mind this is a model, that is, an abstraction of reality. It is not reality, but it helps us understand reality. The horizontal axis, in its pure form, is the arrival rate. It’s how many transactions are arriving into the Oracle system each second. The larger the arrival rate, the further to the right we move along the horizontal axis. From an Oracle perspective, think of the arrival rate as the workload statistics on the first page of any StatsPack report. Statistics like executions per second or user calls per second can usually be used as the arrival rate.

[image: image2..pict]
Figure 2. Oracle Response Time Analysis (RTA) is a way to partially quantitatively capture the users experience. Oracle RTA is a combination of classical RTA and Oracle’s wait interface. I published the first Oracle RTA in 2001.

Notice that the response time is flat with a lighter workload. But with any queuing related system, as the workload increases, at some point processes will have to wait. From an Oracle perspective we can capture this wait time, quantify it, and use it for our analysis.

Look closely at the right part of Figure 2. Notice how both the response time is systematically divided into smaller components until they reach a very low level, such as an Oracle wait event. Also notice that we can group or classify Oracle wait events into higher-level representations, like simply IO. Classifying time is extremely important for Oracle performance analysis and communication. No manager wants to hear, “Ninety percent of Oracle’s wait time is db file scattered reads.” What they want to hear is that performance is suffering, in part, because transactions are waiting for IO. Depending on your Oracle release, Oracle has created twelve or thirteen workload classes. But many people, such as myself, have created our own classes and usually there are only a few. I personally rely on five classes.

When I start my 3-Circle Analysis, I always start by filling in the basic Oracle response time components like I have shown in Figure 2. I then use this to determine what Oracle changes I can make to reduce the response time (not just the wait time) and also how this would manifest in the application and in the operating system.

I mentioned above how being hyper-focused on the wait interface can lead to a miss-diagnosis. With an understanding of Oracle response time analysis, you should easily be able to see why. For example, suppose most of the wait time is associated with the cache buffer chain latch. Just as important, Oracle is consuming all the available CPU. If we just focus wait time and expect response time decrease we are being misled. In an Oracle system, both the service time (that is, CPU time) and the queue time (that is, wait time) are free to fluctuate. Oracle latch wait time is actually related to process sleep time, not spinning on the latch. So if we tweak Oracle with the intention of reducing the wait time, we are actually focusing on reducing the sleep time. However, it you are not careful, this can cause increased spinning (repeatedly requesting a latch), which consumes CPU time. As a result, the overall response time can increase. So the wait event focused DBA thinks performance has improved, but the response time focused DBAs realized that while there is a drop in latch wait time, CPU consumption has increased along with the response time! This is clear example of why response time analysis is superior and goes beyond wait event analysis.

To learn more about response time analysis, I would highly recommend reading my paper. You can download, Oracle Response Time Analysis for free from my web site, http://www.orapub.com . All my performance class and seminars dig deep into understanding and practically applying Oracle RTA.

Tools To Enhance Your Work

Every Oracle performance analyst uses tools and usually they are quite passionate about their selection. Whatever tools you use they must to enhance your work by supporting your methods and techniques.

Most DBAs responsible for many databases prefer to use graphical products. These tools typically provide for a quick high-level visual analysis. For deep and involved problems, you will typically have to use very specialized SQL scripts. Most senior DBAs have their own tool kit. I have my own as well and place it on-line for people to use as they wish. I call it the OraPub System Monitor or OSM for short [OSM].

While SQL scripts are useful, they do put some efficiency limits on you and are not optimized like most (well… we hope) professional products. I have two main requirements I apply when discussing any professional product.

First, the product must be a natural extension to your performance work. That is, it must help you and not hinder you. I recognize that everyone approaches performance analysis slightly different. Even those who faithfully follow OraPub’s 3-Circle Analysis method will have their own personal slant or perspective added. This is one reason why so many performance products are on the market today and have been for many years. My point is that whatever product you use, it must empower you and propel you in ways you could not otherwise do.

I personally prefer products that are, by their design, response time analysis based. For me, the best tool on the market today is Confio’s Ignite product. It satisfies all my requirements and is not prohibitively expensive. The Ignite product does indeed act like an extension of my performance analysis work. It does not slow down my work or make it more cumbersome. In fact, it empowers me to work extremely fast, which give me more time to focus on analysis rather than extracting the data or clicking through an endless series of screens. It’s wonderful.

Second, it is important to have tools that provide both interactive and historical performance analysis capabilities. Most SQL script are interactive focused. That is, they provide a real-time view into your system. Quest’s Spotlight product is an example of a hyper real-time interactive product. (How useful it is, is an entirely different discussion.) Some tools fall into the historical category, that is, they are used for pure historical analysis. Still other products provide a very nice mix. For example, while historical information is stored, it is immediately available. So when you do receive a call form a user, you have the capability to drill down and analyze what just happened. For me, Confio’s Ignite provides this blended capability wrapped around response time analysis.

I hope I’m not sounding like a commercial. That is not my intent. But I do want to share with you my tool requirements and the tools I feel work very well with my methods. Over time you’ll discover your own personal balance between graphical versus scripts and interactive versus historical.

Oracle Internals

For most DBAs, learning about Oracle internals is something they love to do and never feel like they have enough time to learn what they need to know. There are many ways to learn about Oracle internals. Learning about Oracle internals without a method or a frame to practically apply what you learn is of limited analysis value and will limit your career. Sure it’s fun to speculate, present at conferences, write your own blog, and carry on long and exotic conversations with people, but it won’t really help you. Every DBA eventually finds the balance between information they can use to affect their systems versus when it’s time to call Oracle Support to report a bug. As a researcher, writer, and teacher, I am continually challenging myself with presenting relevant and practical information, not cocktail party conversations.

Before you get deep into any area of Oracle internals, first focus on the database server’s memory architecture, process architecture, and data structure. And as you learn, start writing your own performance scripts and run them on your production system. This is the best way I know to remember what you learn.

Honestly, Oracle documentation is fine for learning the basics. I would also attend an introductory Oracle DBA course, and perhaps a “new features” class highlighting your latest Oracle release. But your performance prowess will dramatically improve when you combine an understanding of Oracle’s architecture, good analysis tools, and superior methods (like the ones presented in this paper). Once you’ve got these three areas covered, then you can start digging into the details.

Concluding Thoughts

Oracle performance analysis is a wonderful career full of challenges and adventure. The key to consistently good performance analysis is a solid methodical approach, combined with a deep understanding of Oracle internals, and an ability do diagnose the operating system. Once you start gaining proficiency in these three key areas, you’ll be amazed at how quickly and strong (that is, unbreakable) you performance work will become.

I hope you have enjoyed reading this paper. Researching, writing, and teaching are some of the few things in life I truly enjoy. My hope is that much of the complexity and contradictions of Oracle performance analysis has been removed and you are able to see a clearer path toward consistently brilliant performance analysis!

About The Author

Mr. Shallahamer brings his unique experiences to thousands as a keynote speaker, a sought after teacher, a researcher, a writer, and author of the book, Forecasting Oracle Performance. He is also the designer and developer of both of OraPub's Advanced Reactive Performance Management Firefighting and Forecasting Oracle Performance classes as well as the architect of HoriZone, OraPub's service level management solution. For over 20 years, he has been helping companies improve their service delivery by carefully managing and optimizing performance, service levels, and IT investment.

Mr. Shallahamer spent nine years at Oracle Corporation personally impacting literally hundreds of consultants, companies, database administrators, performance specialists, and capacity planners throughout the world. After co-founding Oracle's Core Technologies and System Performance Group, he left Oracle in 1998 to start OraPub, Inc. a company focusing on "Doing and helping others do" both reactive and proactive Oracle performance management. He has published over 22 technical papers and personally trained 1000s of DBAs on five continents in 21 countries.

When Mr. Shallahamer is not working on maximizing IT efficiency, he is fly fishing, praying, backpacking, bee keeping, riding his motorcycle, playing guitar, or just relaxing around a fire.

Inquires

To inquire about OraPub’s forecasting and capacity planning training, please visit either http://www.orapub.com/fop or http://training.orapub.com or simply http://www.orapub.com

To inquire about OraPub’s performance diagnosis and optimization training, please visit either http://www.orapub.com/rpm or http://training.orapub.com or simply http://www.orapub.com

To inquire about speaking engagements, please visit http://resources.orapub.com/RequestSpeaker.asp

References

There are a number of references and resources (papers, tools, books, spreadsheets, shell scripts) available on OraPub’s web site. Please go to http://www.orapub.com and click or search on “forecasting”.

[LATCH]. Conquering Oracle Latch Contention. To download, go to http://www.orapub.com and search for “latch”.

[MYTHS]. Modern Performance Myths. To download, go to http://www.orapub.com and search for “myth”.

[OSM]. OraPub System Monitor. OraPub’s free performance diagnosis tool kit. To download, go to http://www.orapub.com and search for “OSM”.

[RPM, RPMI] Advanced Reactive Performance Management, Advanced Reactive Performance Management Intensive Seminar, or Oracle Performance Firefighting Intensive are all courses authored and taught by Mr. Shallahamer focusing on methodical performance diagnosis, resolution, and communication. See http://training.orapub.com for details.

[RTA]. Oracle Response Time Analysis. To download, go to http://www.orapub.com and search for “RTA”.

[TRAIN]. OraPub turns its research in to practical training for the professional Oracle DBA. For more information, please see http://www.orapub.com , email us at training@orapub.com or give us a call.

[TPM]. Total Performance Management. To download, go to http://www.orapub.com and search for “tpm”.

[WEA]. Direct Contention Identification Using Oracle’s Session Wait Event Views. To download, go to http://www.orapub.com and search for “wait event”.

1

Paper 349

