Database – Installation/Migration/Upgrade

Maximizing Availability with Online OLTP Schema Updates
Kenneth Seewald,Verisign Inc.
Introduction
A critical aspect of meeting stringent availability requirements for OLTP systems is ensuring that there exists an elegant, low-risk means of deploying database schema changes while the DB remains active (or at least with a minimal amount of planned downtime). These changes include altering existing schema objects and stored procedures as well as creating new objects and procedures.

This document will examine several techniques to perform as much of the schema update work as possible online both before and after an outage window. Several real world cases will demonstrate how these techniques have been used to successfully minimize/eliminate outages.
Executive Summary

Listed below is a high level summary of the research and findings presented in this document.
Executing DDL Commands Online

An investigation was performed to determine which DDL commands could be safely performed in an online environment and identify any conditions or restrictions related to their online usage. To this end, we started by identifying a set of DDL command test candidates. These selected DDL commands (schema changes) were tested in a simulated online OLTP environment and conditions (errors/waits/invalidations) which may adversely impact ongoing transaction activity were observed and analyzed. A set of criteria were developed to use in conjunction with the observed test results to determine which commands are candidates for online execution. These criteria serve only as a reference in planning the implementation of database changes. The decision to actually perform a change online versus offline will still require judgment dependent upon conditions specific to each project. For example, it may be acceptable to execute commands which obtain table locks for short periods or invalidate stored procedures on systems with low transaction activity levels, while this could lead to an unacceptable spike in waiting DML operations on very busy systems. Recommendations include establishing a policy for each project/system regarding which types of online interruption are acceptable, their acceptable duration, and when they can be performed (scheduled execution). Several new and enhanced 11g features were described which can further assist in performing DDL commands online.
Using DBMS_REDEFINITION to Perform Table Redefinitions Online
Oracle provides a stored package, DBMS_REDEFINITION, which can be used to perform table redefinition tasks online. Our goal was to assess the pros and cons in using this feature to perform redefinitions in an Oracle 10.2.0.3 online environment. We started by describing the redefinition process and defining two test cases to perform several types of redefinition tasks. The steps used to implement each test case were illustrated as well as results from their execution. A list of observations and issues discovered during the testing has also been presented. Given the test case results and observations, a list of guidelines and recommendations were developed to identify those scenarios where using DBMS_REDEFINITION may or may not be appropriate. We have identified certain tasks that can be performed with greater ease and less risk using an equivalent online DDL command. Likewise, we have identified some tasks that can be performed better or are only possible online using RDBMS_REDEFINITION. Several new and enhanced 11g features were described which can further assist in performing table redefinitions online with DBMS_REDEFINITION.
Executing DDL Commands Online

The first step in eliminating planned outage time is to determine which DDL commands can be safely performed in an online environment and identify conditions or restrictions related to their online usage. We will start by identifying a set of candidate DDL commands to test. These commands will then be tested in a simulated online OLTP environment and conditions which may adversely impact ongoing transaction activity will be observed and analyzed. A set of criteria will be developed to use in conjunction with the observed test results to determine which commands are candidates for online execution. Guidelines and recommendations will be provided to assist in planning schema changes with minimized outage times. Several new and enhanced 11g features will be described which can further assist in performing DDL commands online.

Identifying DDL Command Test Candidates

There are a large number of available Oracle DDL commands, and that number is increasing rapidly with each major database release. To test each of these with every possible clause and keyword combination would be unrealistic. A list of essential commands to test should be derived based on the following factors for each target system:

· Currently used object types and features - Include commands for currently supported object types and features. Exclude commands which do not apply, unless there is a strong potential for their near term implementation. For example, if the system only uses only heap tables and b-tree indexes, you may want to exclude IOTs and partitioning related commands.

· Periodically performed maintenance tasks - Include maintenance commands used to coalesce, rebuild and allocate space for objects.

· Previously performed schema updates - Include commands used during previous deployments to create, alter and drop database objects. Future deployments will likely require similar changes.

· Projected future schema updates - Include commands that may potentially be used in the future. Perhaps you anticipate the conversion heap tables to IOTs or partitioned tables to enhance performance.

Test Case Description and DDL Commands

Our sample registration OLTP application uses only standard heap tables with b-tree indexes for primary tables and monthly date range partitioned tables with local indexes for historic data. Partition maintenance is required monthly on each historic table to retain a 3 month rolling window (current month plus 2 previous months). Tables and indexes are occasionally coalesced and rebuilt, as necessary. All tables are accessed by the application exclusively using stored procedures. Typical code deployments include creation, alteration, and dropping of tables, indexes and stored procedures. Based on these factors, the DDL commands listed in Table 1 were selected for testing with this application.
Creating an Online DDL Testing Environment

An accurately configured database environment and test driver are essential in order to appropriately test DDL commands in an online environment. Separate sets of testing should be performed to certify each combination of application, database and platform version. Even a patch release may have an impact on which commands may be successfully executed. For example, using the ALTER INDEX … ONLINE commands in an Oracle 9.2.0.5 database on AIX will result in ORA-07445 errors when executed under load due to a known bug fixed in version 9.2.0.6. As this suggests, it is important to test even commands which have the ONLINE keyword to ensure they work as expected in each specific environment. The designated test driver used to simulate production load may be created using a suitably configured COTS product or can be a manually developed framework such as a PL/SQL procedure.
Test Case Environment

The following components were used to simulate an online environment in which to test the schema changes for our sample registration application:

· Database Environment - Created with the following characteristics:

Application - Production code base (stored procedures) and tables populated with a full data set.

Database - Oracle 10g Enterprise Edition Release 10.2.0.3

Platform - AIX5L Based System (64-bit)

· Test Driver - Listed below is pseudo code for the PL/SQL stored procedure test driver (genload) used to create system load. It takes as parameters, the number of iterations to make through the main loop (pNumRegistrations) and a delay time (pDelay). One add, modify and delete transaction is performed during each loop iteration. Adjusting pNumRegistrations controls the total number of transactions processed and hence, how long the driver runs. An optional delay is implemented between transactions in order to tune the throughput. When executed in a single SQL*Plus session, the observed processing rate was approx. 200 txns/s. This rate can be adjusted upward by running the driver concurrently in multiple sessions and adjusted downward in each session with pDelay parameter. Testing with the load spread out through multiple sessions is advised, as this improves production simulation.
CREATE OR REPLACE PROCEDURE

genload(pNumRegistrations NUMBER default 10000,

 pDelay NUMBER default 0)

IS

 ...

BEGIN

 ...

 /* Process registrations in a loop */

 FOR i IN 1..pNumRegistrations LOOP

 /**********************/

 /* ADD A REGISTRATION */

 /**********************/

 -- Create new registration test data.

 -- Call all stored procs used to

 -- add a new registration in prod.

 COMMIT;

 /* Delay between transactions */

 dbms_lock.sleep(pDelay);

 /*************************/

 /* MODIFY A REGISTRATION */

 /*************************/

 -- Create modify registration test data.

 -- Call all stored procs used to

 -- modify an existing registration in prod.

 COMMIT;

 /* Delay between transactions */

 dbms_lock.sleep(pDelay);

 /*************************/

 /* DELETE A REGISTRATION */

 /*************************/

 -- Create delete registration test data.

 -- Call all stored procs used to

 -- delete an existing registration in prod.

 COMMIT;

 /* Delay between transactions */

 dbms_lock.sleep(pDelay);

 END LOOP;

EXCEPTION

WHEN OTHERS THEN

 ROLLBACK;

...

END genload;

Collecting and Organizing Test Results

The following types of information should be observed and recorded while testing DDL commands online.

· Errors which may occur in a session running the DDL command. Some errors may not appear consistently on every execution.

· Errors which may occur in sessions running the test driver. These errors would propagate back to the application layer in a production environment.

· Waits which may be incurred in sessions running the test driver. Exclusive object locks are required by certain DDL commands which may create a spike in waiting DML operations.

· Invalidation of stored packages which reference the target schema object. New calls to the package are temporarily blocked until it can be recompiled. This may result in a spike in waiting transaction activity

Test Case Results
Table 1 provides the results from running each candidate DDL command identified for our sample registration system in the defined testing environment. The load simulating test driver was started prior to executing each DDL command. The table columns are defined as follows:

· DDL Command – The Data Definition Language command associated with a schema change. Unless noted otherwise, each DDL command was executed on a schema object receiving concurrent DML activity from the test driver.

· Command Errors (ORA-xxxxx/None) – Specifies any errors which may be observed in the session executing the DDL command. An analysis of each command error is provided in the next section.

· Transaction Errors and Waits (ORA-xxxxx/Wait/None) – Specifies any errors which may be observed in the sessions executing the transaction test driver due to the DDL command. In addition, “Wait” will be specified if transactions were subjected to a suspension due to object locking and/or stored package invalidation. An analysis of waits and each transaction error is provided in the next section.
· Packages Invalidated (Yes/No) – Specifies if referencing PL/SQL stored packages were invalidated due to executing the DDL command. The impact of package invalidation is provided in the next section.

· Comments – Any special test condition or observance.
Table 1: Online Testing Results for Sample Registration System
	DDL Command
	Command
Errors
	Transaction Errors and Waits
	Packages Invalidated
	Comments

	ALTER INDEX index ALLOCATE EXTENT
	ORA-00054
	Wait
	No
	

	ALTER INDEX index DEALLOCATE UNUSED
	ORA-00054
	Wait
	No
	

	ALTER INDEX index MODIFY PARTITION current_month_partition ALLOCATE EXTENT
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
MODIFY PARTITION past month partition
ALLOCATE EXTENT
	None
	None
	No
	

	ALTER INDEX index COALESCE
	None
	None
	No
	

	ALTER INDEX index MODIFY PARTITION

current_month_partition

COALESCE
	None
	None
	No
	

	ALTER INDEX index MODIFY PARTITION

past_month_partition

COALESCE
	None
	None
	No
	

	ALTER INDEX index
MODIFY PARTITION current_month_partition
DEALLOCATE UNUSED
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
MODIFY PARTITION past_month_partition
DEALLOCATE UNUSED
	None
	None
	No
	

	ALTER INDEX index
NOPARALLEL
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
PARALLEL
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
REBUILD
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
REBUILD ONLINE
	None
	None
	No
	

	ALTER INDEX index
REBUILD PARTITION current_month_partition
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
REBUILD PARTITION past_month_partition
	None
	None
	No
	

	ALTER INDEX index
REBUILD PARTITION current_month_partition

ONLINE
	None
	None
	No
	

	ALTER INDEX index
REBUILD PARTITION past_month_partition

ONLINE
	None
	None
	No
	

	ALTER INDEX index
RENAME PARTITION current_month_partition

TO new_name
	ORA-00054
	Wait
	No
	

	ALTER INDEX index
RENAME PARTITION past month partition

TO new_name
	ORA-00054
	Wait
	No
	

	ALTER PACKAGE package COMPILE
	None
	Wait
	Yes
	

	ALTER PACKAGE package COMPILE BODY
	None
	Wait
	Yes
	

	ALTER TABLE table
ADD (column datatype DEFAULT ‘default’ NOT NULL)
	ORA-00054
	Wait
	Yes
	

	ALTER TABLE table
ADD CONSTRAINT constraint_name FOREIGN KEY (column1, column2) REFERENCES ref_table (column1, column2)
	ORA-00054
	ORA-04020

Wait
	No
	

	ALTER TABLE table
ADD PARTITION partition range_values_clause
	None
	None
	No
	

	ALTER TABLE table
ALLOCATE EXTENT
	ORA-00054
	Wait
	No
	

	ALTER TABLE table
DEALLOCATE UNUSED
	ORA-00054
	Wait
	No
	

	ALTER TABLE table

DISABLE CONSTRAINT constraint
	ORA-00054
	ORA-04020

Wait
	No
	

	ALTER TABLE table
DROP COLUMN column
	ORA-00054
	Wait
	Yes
	

	ALTER TABLE table
DROP CONSTRAINT constraint
	ORA-00054
	ORA-04020

Wait
	No
	

	ALTER TABLE table
DROP PARTITION past_month_partition
	None
	None
	No
	All foreign keys that refer to the table must be disabled if data is present in past_month_partition

	ALTER TABLE table DROP UNUSED COLUMNS
	ORA-00054
	Wait
	Yes
	

	ALTER TABLE table

ENABLE NOVALIDATE CONSTRAINT constraint
	ORA-00054
	ORA-04020

Wait
	No
	

	ALTER TABLE table ENABLE ROW MOVEMENT
	ORA-00054
	Wait
	Yes
	

	ALTER TABLE table
EXCHANGE PARTITION past_month_partition WITH TABLE table2
	None
	None
	No
	All foreign keys that refer to the table must be disabled OR created with “enable novalidate” if data is present in past_month_partition

	ALTER TABLE table
MERGE PARTITIONS past_month_partition1, past_month_partition2 INTO past_month_partition2
	None
	None
	No
	

	ALTER TABLE table
MODIFY (column datatype)
	ORA-00054
	Wait
	Yes
	“table” currently accessed but “column” not currently accessed.

	ALTER TABLE table MOVE TABLESPACE tablespace
	None
	ORA-01502
	No
	All indexes must be rebuilt after the move completes.

	ALTER TABLE table
MOVE PARTITION current_month_partition TABLESPACE tablespace
	ORA-00054
	ORA-01502
	No
	All indexes must be rebuilt after the move completes

	ALTER TABLE table
MOVE PARTITION past_month_partition TABLESPACE tablespace
	None
	None
	No
	All indexes must be rebuilt after the move completes

	ALTER TABLE table
NOPARALLEL
	ORA-00054
	Wait
	No
	

	ALTER TABLE table
PARALLEL
	ORA-00054
	Wait
	No
	

	ALTER TABLE table
RENAME COLUMN column TO new_name
	ORA-00054
	Wait
	Yes
	“table” currently accessed but “column” not currently accessed.

	ALTER TABLE table
RENAME CONSTRAINT constraint TO new_name
	ORA-00054
	Wait
	No
	

	ALTER TABLE table
RENAME TO new_name
	None
	None
	No
	“table” has no dependant objects.

	ALTER TABLE table SET UNUSED COLUMN column
	ORA-00054
	Wait
	Yes
	Very fast compared to DROP COLUMN

	ALTER TABLE table SHRINK SPACE
	None
	None
	No
	

	ALTER TABLE table
TRUNCATE PARTITION past_month_partition
	None
	None
	No
	All foreign keys that refer to the table must be disabled if data is present in past_month_partition

	CREATE OR REPLACE PACKAGE package
	None
	Wait
	Yes
	

	CREATE OR REPLACE PACKAGE BODY package_body
	None
	Wait
	Yes
	

	CREATE TABLE (column1 datatype1, column1, datatype2)
	None
	None
	No
	

	CREATE UNIQUE INDEX index ON table (column)
	ORA-00054
	Wait
	No
	

	CREATE UNIQUE INDEX index ON table (column) ONLINE
	None
	None
	No
	

	DROP INDEX index
	ORA-00054
	Wait
	No
	

	DROP PACKAGE package
	None
	None
	No
	“package” has no dependant objects.

	DROP PACKAGE BODY package_body
	None
	None
	No
	“package_body” has no dependant objects.

	DROP TABLE table
	None
	None
	No
	“table” has no dependant objects.

Analysis of Errors, Waits and Invalidations
An analysis is provided below for each of the errors, waits and stored package invalidations encountered while testing the sample registration system.

ORA-00054 Errors and Exclusive Object Lock Waits

DDL commands requiring an exclusive object lock may return with an ORA-00054 error (resource busy and acquire with NOWAIT specified) when executed during concurrent DML activity on the specified schema object. The command will succeed when re-attempted if an exclusive lock on the schema object can be obtained. Once the lock is obtained, all DML that wants access to the object must wait for the DDL command to complete. If this requires extensive time, an unacceptable spike in waiting DML operations may occur.

Figure 1 provides an example of attempting to obtain an exclusive object lock to perform DDL while the object is receiving concurrent DML activity. The DDL activity is shown in session c1 and concurrent DML activity is shown executing in sessions s1 through s5. Green and red intervals represent DML lock and wait times, respectively. At time t1 an attempt is made to execute the DDL command. However, an exclusive lock could not be obtained since transactions in s2 and s4 have DML locks on the object. Hence, the command immediately returns with an ORA-00054 error. Shortly afterwards, between t2 and t3, an idle period exists but the DDL is not executed. At time t4 the command successfully obtains the exclusive lock and all subsequent DML that wants access to the object must wait. At time t5 the DDL command completes and waiting transactions in session s1 through s5 proceed.

[image: image1.emf]S

e

s

s

i

o

n

s

Time

t2

c1

s1

s2

s3

s4

s5

dml

dml

dml

dml

dml dml

t1 t3

ORA-00054

dml

dml dml

t4

dml

t5

wait

dml dml

dml dml

dml dml

dml dml dml

dml dml

dml

dml

dml

dml

dml

dml

dml

dml

dml

DDL

wait

wait

wait

wait

Figure 1: Obtaining an Exclusive Object Lock to Perform DDL
Stored Package Invalidations

Executing various DDL commands will invalidate stored packages which reference the target schema object. New calls to the package are temporarily blocked until it can be recompiled. This may result in a spike in waiting transaction activity.

Figure 2 provides an example of how invalidations impact stored package execution. Package calls are shown in session’s s1 through s5. Green and red intervals represent execution and wait times, respectively. At time t1, a stored package is invalidated when a DDL command is executed in session c1. All package calls started prior to the invalidation are allowed to continue but all new calls must wait. At time t2, all executing calls have completed and recompilation begins. At time t3, the recompilation is completed and all calls waiting for the package are executed.

[image: image2.emf]S

e

s

s

i

o

n

s

Time

t1

c1

s1

s2

s3

s4

s5

SP Invalidated

t3

wait

t2

sp sp

sp

sp sp

sp wait sp

wait

wait

sp

sp

sp

sp sp sp sp

sp

sp

sp

SP Recompiled

Figure 2: Invalidation Impact on Stored Package Execution

NOTE: When a package containing global variables becomes invalid and subsequently recompiled, then all sessions which accessed the package prior to the invalidation will receive ORA-04068 errors (existing state of package has been discarded) during subsequent access. All affected sessions would need to be re-established to resume access to the package. This scenario can be avoided by NOT using global variables in packages.

ORA-04020 Errors

An ORA-04020 error in a transaction session indicates that a deadlock was encountered while trying to lock a required object. This error was encountered when attempting commands that manipulate constraints (add/drop/enable/disable)

ORA-01502 Errors

An ORA-01502 error in a transaction session indicates that an attempt was made to access an index that has been marked unusable by the DDL operation. This error was encountered when attempting to move a table online. All indexes associated with the moved table need to be rebuilt prior to allowing online access.
Online Criteria
Listed below are criteria to help decide if a DDL command can be performed online based on the testing results.

1. IF the DDL Command is not subject to command/transaction errors, waits or package invalidation, THEN it can be performed online.
2. IF the DDL Command may cause concurrent transactions that access the target schema object to raise errors, THEN it should NOT be performed online.
3. IF the DDL Command is subject to possible ORA-00054 errors (resource busy and acquire with NOWAIT), THEN it may still be performed online if the DML waits associated with holding an exclusive lock on the target object are deemed acceptable.
4. If the DDL Command causes invalidation of referencing stored procedures, THEN it may still be performed online if the waits required for recompilation are deemed acceptable and the package does not contain global variables.

Figure 3 provides these criteria in flow chart format.

[image: image3.emf]Txn Errors Cmd Errors SP Invalidation

ORA-00054 DML Waits OK

SP Global

Variables

SP Waits OK

OFFLINE

ONLINE

No

Yes

No No

No

Yes

No No

DDL

Command

Yes

Yes

Yes No

Yes

Yes

Figure 3: Online Criteria

Guidelines and Recommendations

The following guidelines and recommendations are provided to assist in planning schema changes online and minimize outage times.

5. Develop a policy for each application/system regarding acceptable waits induced by DDL commands. Database objects should be classified depending on their access characteristics. For example, some objects may be constantly accessed while others are used for periodic processing during known time periods. For each class of object, the policy should specify execution windows when waits can be incurred and for how long (elapsed time). Execution windows should be off-peak periods when transaction rates are at their lowest for the target object. The acceptable amount of elapsed wait time should consider the impact on application end-users (response time) and ability of the application to handle backlogged transactions.
6. Develop a PL/SQL framework to re-attempt DDL commands subject to ORA-00054 errors. This would assist in the scripting of online changes. Such a framework is provided by the PL/SQL code (exec_online) listed below. It takes as parameters, the DDL command to be executed (pDDLtext), the maximum number of times to attempt executing the command (pMaxAttempts) and a delay time between each attempt (pDelay).

CREATE OR REPLACE PROCEDURE

exec_online (pDDLtext VARCHAR2,

 pMaxAttempts NUMBER default 3600,

 pDelay NUMBER default 1)

IS

 error_msg VARCHAR2(256);

 vAttempts NUMBER;

 vSuccess NUMBER;

 e_busy_nowait EXCEPTION;

 pragma exception_init(e_busy_nowait,-00054);

BEGIN

 vAttempts := 0;

 vSuccess := 0;

 /* Attempt to execute the DDL command */

 FOR i IN 1..pMaxAttempts LOOP

 vAttempts := vAttempts +1;

 BEGIN

 execute immediate pDDLtext;

 vSuccess := 1;

 exit;

 EXCEPTION

 WHEN e_busy_nowait THEN

 dbms_lock.sleep(pDelay);

 WHEN OTHERS THEN

 error_msg := substr(sqlerrm,1,256);

 dbms_output.put_line('--');

 dbms_output.put_line('Error Message In exec_online:');

 dbms_output.put_line(error_msg);

 exit;

 END;

 END LOOP;

 dbms_output.put_line('--');

 dbms_output.put_line('Attempts to execute: ' || vAttempts);

 IF (vSuccess = 1) THEN

 dbms_output.put_line('DDL Command Successful');

 ELSE

 dbms_output.put_line('DDL Command NOT Successful');

 END IF;

END exec_online;

7. Do not execute DDL commands that manipulate constraints online, as this may result in deadlocked transactions (ORA-04020) and/or data integrity violations.

8. Do not execute DDL commands to “move” tables online (except IOTs), as this will mark all table indexes unusable, resulting in ORA-01502 transaction errors. All indexes associated with the moved table need to be rebuilt prior to allowing online access.

9. Do not group prolonged batch and brief OLTP procedures in the same stored package. This may induce an extended wait for SP recompilation when a brief procedure is invalidated.

10. Do not use global variables in stored packages. When a package containing global variables becomes invalid (and subsequently recompiled), then all sessions which accessed the package prior to the invalidation will receive ORA-04068 errors during subsequent access. All affected sessions would need to be re-established to resume access to the package.

New and Enhanced 11g DDL Features

Oracle 11g introduces several new and enhanced features that assist in performing DDL commands online.

DDL Wait Option
As previously discussed, some DDL commands require exclusive locks on internal structures. If these locks are unavailable when a DDL statement runs, the DDL statement immediately fails (ORA-00054) even though it might have succeeded if it had been executed sub-seconds later.

To enable statements to wait for locks, you may now specify a DDL lock timeout – the number of seconds a DDL command waits for its required locks before failing.

To specify a DDL lock timeout, use the newly introduced DDL_LOCK_TIMOUT parameter. The permissible range of values for DDL_LOCK_TIMOUT is 0 to 100,000. The default is 0.

You can set the DDL_LOCK_TIMOUT at the system level, or at the session level with an ALTER SESSION statement.

This new option gives you more flexibility to define grace periods for such commands to succeed instead of raising an error right away, thus requiring additional application logic to handle such errors.

Online Index Creation and Rebuild Enhancements
Online index creation and rebuild prior to Oracle 11g required a DML-blocking lock at the beginning and end of the rebuild for a very short period of time. This meant that there would be two points at which DML activity came to a halt. This DML-blocking lock is no longer required, making these online index operations fully transparent.

Enhanced ADD COLUMN Functionality
Adding new columns with DEFAULT values and NOT NULL constraint no longer requires the default value to be stored in all existing records. Instead, the default values are maintained in the data dictionary. This not only enables a schema modification in sub-seconds and independent of the existing data volume, it also consumes no space.

Finer Grained Dependencies
In releases prior to Oracle 11g, metadata recorded mutual dependencies between objects with the granularity of the whole object. For example, PL/SQL unit P depends on PL/SQL unit Q or that view V depends on table T. This means that dependent objects were sometimes invalidated when there was no logical requirement to do so. For example, if view V depends only on columns C1, C2, and C3 in table T and a new column, C99, is added, the validity of view V is not logically affected. Nevertheless, in earlier releases, V was invalidated by the addition of column C99.

Oracle Database 11g records dependency metadata at a finer level of granularity so that the addition of C99 does not invalidate view V. Similarly, if procedure P depends only on elements E1 and E2 in package PKG, then if element E99 is added to PKG, procedure P is not invalidated. (In Oracle Database 10g, this change to PKG would invalidate procedure P.)

By reducing the consequential invalidation of dependent objects in response to changes in the objects they depend upon, application availability is increased. The benefit is felt both in the development environment and when a live application is parsed or upgraded. The benefit occurs when an Oracle Database patchset is applied because changes to schema objects are required to be compatible and, therefore, not cause consequential invalidations.

Invisible Indexes
An invisible index is an alternative to making an index unusable or even to drop it. An invisible index is maintained for any DML operation but is not used by the optimizer unless you explicitly specify the index with a hint. Invisible indexes can be created temporarily for specialized non-standard operations, such as online application migration and testing, without affecting the behavior of any existing application. Furthermore, invisible indexes can be used to test the removal of an index without dropping it right away, thus enabling a grace period for testing in production environments.

Using DBMS_REDEFINITION to Perform Table Redefinitions Online

The DBMS_REDEFINITION package, originally introduced in Oracle 9i and improved in releases 10g/11g, can be used to perform table definition tasks online. We will assess the pros and cons in using this feature to perform redefinitions in an Oracle 10.2.0.3 online environment. A description of the redefinition process is provided and two test cases are defined to test several types of redefinition tasks. The steps used to implement each test case will be illustrated as well as their execution results. Using the test case results and associated observations, a list of guidelines and recommendations will be provided to identify those scenarios where using DBMS_REDEFINITION may or may not be appropriate. Several new and enhanced 11g features were described which can further assist in performing table redefinitions online with DBMS_REDEFINITION.

Package Description

Tables can be redefined online using the DBMS_REDEFINITION package. Using this approach an interim table is created that contains all the desired attributes. The reorganization begins by calling the procedure START_REDEF_TABLE, which is where the column mappings between the current and new version of the table are described. All rows in the original table are created in the interim table. Snapshot logs are defined on the original table to keep track of subsequent changes. Dependent objects such as triggers, constraints and indexes can be automatically copied to the interim table using the procedure COPY_TABLE_DEPENDENTS. During the reorganization, any changes made to the original table are added to the interim table by calling the procedure SYNC_INTERIM_TABLE. This synchronization is performed using an incrementally maintainable materialized view and the snapshot log. The reorganization is complete when the procedure FINISH_REDEF_TABLE is called and the interim table is renamed as the main table. Thus, the administrator has control over when to switch form the original to the newly defined table. The switch is very brief and is independent of the size of the table or the complexity of the redefinition. This entire process occurs while users have full access to the table thus ensuring system availability.

The following tasks can be performed online using DBMS_REDEFINITION :

· Convert a table to a new table type (heap, partitioned, IOT)

· Move a table to a different tablespace

· Modify physical attributes of a table

· Recreate a table to reduce fragmentation

· Reorganize a Single Partition

· Convert between data types (including LONG, LOB, ADT)

· Add, modify or drop columns in a table

· Add support for parallel queries

· Transform data in a table

Test Cases
The following test cases will illustrate how DBMS_REDEFINITION can be used to perform an online redefinition for an entire table or single table partition. The utilized testing environment was identical to that used for our DDL command test cases.
· Test Case 1 – Redefine a table by adding a new column populated with transformed data. Also move the table and some indexes to new locations. utilize
· Test Case 2 – Redefine a single table partition, moving it to a new location.
Test Case 1

This test case illustrates online redefinition of the registration table using our previously defined sample registration system. The registration table and related objects in the reg schema are depicted in Figure 4. All tables and indexes reside in the reg_data_tbs01 and reg_idx_tbs01 tablespaces, respectively.

[image: image4.emf]REGISTRATION

PK regno

U1 regname

I1 custno

regperiod

I2 expirationdate

createddate

updateddate

STATUS

PK regno

PK statuscode

createddate

CUSTOMER

PK custno

I1 name

address

phone

STAT_REG_FK01

STATUS_PK

CUSTOMER_PK

CUST_IDX01

REG_CUST_FK01

REGISTRATION_PK

REG_IDX01

REG_IDX02

REG_IDX03

Figure 4: REG Schema Registration Objects

The registration table is redefined as follows:

· New column deletedate is added and initialized to add_months(expirationdate,expirationperiod)

· Add new index reg_idx04 on deletedate in tablespace reg_idx_tbs02
· Relocate existing index reg_idx01 from reg_idx_tbs01 to new reg_idx_tbs02 tablespace
· Relocate table from reg_data_tbs01 to new reg_data_tbs02 tablespace
The steps used to implement this redefinition are illustrated below. The results associated with executing each step are included.

11. Verify that the registration table can be redefined online. If the table is not a candidate for online redefinition,, the following procedure will raise an error.
BEGIN

DBMS_REDEFINITION.CAN_REDEF_TABLE('reg','registration',DBMS_REDEFINITION.CONS_USE_PK);

END;

/

RESULT: PL/SQL procedure successfully completed.
12. Create an empty interim table (int_registration) with all of the desired attributes in the new tablespace.
CREATE TABLE int_registration
TABLESPACE reg_data_tbs02
AS (SELECT * FROM registration WHERE 1=0)

/

RESULT: Table created.

ALTER TABLE int_registration ADD(deletedate DATE)

/

RESULT: Table altered.

13. Create the new index on the interim table.
CREATE INDEX reg_idx04

ON int_registration (deletedate)

TABLESPACE reg_idx_tbs02
/

RESULT: Index created.

14. Create the relocated index on the interim table in a new tablespace.
CREATE INDEX int_reg_idx01

ON int_registration (regname)

TABLESPACE reg_idx_tbs02

/

RESULT: Index created.

15. Start the redefinition process.
BEGIN

DBMS_REDEFINITION.START_REDEF_TABLE

(

'reg',

'registration',

'int_registration',

'regno, regname, custno, regperiod, expirationdate, createddate, updateddate, ADD_MONTHS(expirationdate,regperiod) deletedate',

DBMS_REDEFINITION.CONS_USE_PK

);

END;

/

RESULT: PL/SQL procedure successfully completed.

16. Manually register the relocated index.
BEGIN

DBMS_REDEFINITION.REGISTER_DEPENDENT_OBJECT

(

'reg',

'registration',

'int_registration',

DBMS_REDEFINITION.CONS_INDEX,

'reg',

'reg_idx01',

'int_reg_idx01'

);

END;

/

RESULT: PL/SQL procedure successfully completed.

17. Clone dependent objects (Automatically create indexes, grants and constraints on int_registration). Note that all cloned foreign keys are created disabled and subsequently enabled when the redefinition completes.
DECLARE

num_errors PLS_INTEGER;

BEGIN

DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS

(

'reg',

'registration',

'int_registration',

DBMS_REDEFINITION.CONS_ORIG_PARAMS,

TRUE, TRUE, TRUE, TRUE,

num_errors

);

END;

/

RESULT: PL/SQL procedure successfully completed.

18. Query the DBA_REDEFINITION_ERRORS view to check for errors.
SELECT object_name, base_table_name, ddl_txt FROM DBA_REDEFINITION_ERRORS
/

RESULT:

OBJECT_NAME BASE_TABLE_NAME

-------------------- --------------------

DDL_TXT

--

SYS_C006581 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("REGNO" CONSTRAINT "TMP$$_SYS_C0065810"
NOT NULL ENABLE NOVALIDATE)
SYS_C006582 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("REGNAME" CONSTRAINT "TMP$$_SYS_C0065820"
NOT NULL ENABLE NOVALIDATE)
SYS_C006583 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("CUSTNO" CONSTRAINT "TMP$$_SYS_C0065830"
NOT NULL ENABLE NOVALIDATE)
SYS_C006584 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("REGPERIOD" CONSTRAINT "TMP$$_SYS_C0065840" NOT NULL ENABLE NOVALIDATE)
SYS_C006585 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("EXPIRATIONDATE" CONSTRAINT TMP$$_SYS_C0065850" NOT NULL ENABLE NOVALIDATE)
SYS_C006586 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("CREATEDDATE" CONSTRAINT "TMP$$_SYS_C0065860" NOT NULL ENABLE NOVALIDATE)
SYS_C006587 REGISTRATION
ALTER TABLE "REG"."INT_REGISTRATION" MODIFY ("UPDATEDDATE" CONSTRAINT "TMP$$_SYS_C0065870" NOT NULL ENABLE NOVALIDATE)

These errors may be ignored since they are caused by an attempt to create constraints (NOT NULL) that we pre-created on the table. If any other types of errors had been reported, we would need to be resolve them and then re-run COPY_TABLE_DEPENDENTS (previous step) before proceeding.
19. Query the DBA_REDEFINITION_OBJECTS view to verify that all dependent objects are registered. This view shows dependent objects that were registered explicitly with the REGISTER_DEPENDENT_OBJECTS procedure or implicitly with the COPY_TABLE_DEPENDENTS procedure.

SELECT OBJECT_TYPE, OBJECT_NAME, BASE_TABLE_NAME, INTERIM_OBJECT_NAME
FROM DBA_REDEFINITION_OBJECTS
/

RESULT:
OBJECT_TYPE OBJECT_NAME BASE_TABLE_NAME INTERIM_OBJECT_NAME

------------ -------------------- -------------------- --------------------

TABLE REGISTRATION REGISTRATION INT_REGISTRATION
INDEX REG_IDX01 REGISTRATION INT_REG_IDX01
INDEX REGISTRATION_PK REGISTRATION TMP$$_REGISTRATION_PK0

INDEX REG_IDX02 REGISTRATION TMP$$_REG_IDX020
INDEX REG_IDX03 REGISTRATION TMP$$_REG_IDX030

CONSTRAINT REGISTRATION_PK REGISTRATION TMP$$_REGISTRATION_PK0

CONSTRAINT REG_CUST_FK01 REGISTRATION TMP$$_REG_CUST_FK010
CONSTRAINT STAT_REG_FK01 REGISTRATION TMP$$_STAT_REG_FK010
20. Optionally synchronize the interim table int_registration.

BEGIN

DBMS_REDEFINITION.SYNC_INTERIM_TABLE

(

'reg',

'registration',

'int_registration'

);

END;

/
RESULT: PL/SQL procedure successfully completed.

21. Complete the redefinition.

BEGIN

DBMS_REDEFINITION.FINISH_REDEF_TABLE

(

'reg',

'registration',

'int_registration'

);

END;

/

RESULT: PL/SQL procedure successfully completed.

22. Drop the interim table

DROP TABLE int_registration CASCADE CONSTRAINTS

/

RESULT: Table dropped.

Test Case 2
This test case illustrates online redefinition of an individual partition in the registrationaudit table using our previously defined sample registration system. The registrationaudit table and related objects in the reg schema are depicted in Figure 5. Tables and indexes are all date range partitioned by month. In addition, all tables and indexes reside in the reg_data_tbs01 and reg_idx_tbs01 tablespaces, respectively.

[image: image5.emf]REGISTRATIONAUDIT

PK regno

PK transactionid

PK transactiondate

U1 regname

I1 custno

regperiod

I2 expirationdate

createddate

updateddate

TRANSACTION

PK transactionid

PK transactiondate

I1 sessionid

TRANSACTION_PK

TRANS_IDX01

REGAUD_TRANS_FK01

REGISTRATIONAUDIT_PK

REGAUD_IDX01

REGAUD_IDX02

REGAUD_IDX03

PARTITIONS:

REGAUD_200801

REGAUD_200802

REGAUD_200803

REGAUD_200804

PARTITIONS:

TRANS_200801

TRANS_200802

TRANS_200803

TRANS_200804

Figure 5: REG Schema RegistrationAudit Objects

The registrationaudit table is redefined as follows:
· Relocate table partition regaud_200802 from reg_data_tbs01 to new reg_data_tbs02 tablespace
· Relocate index partition regaud_200802 on regaud_idx01 from reg_idx_tbs01 to new reg_idx_tbs02 tablespace
The steps used to implement this redefinition are illustrated below. The results associated with executing each step are included.
23. Verify that the regaud_200802 partition on the registrationaudit table can be redefined online. If the table and/or partition are not a candidate for online redefinition, the following procedure will raise an error.

BEGIN

DBMS_REDEFINITION.CAN_REDEF_TABLE('reg','registrationaudit',

DBMS_REDEFINITION.CONS_USE_ROWID,

‘regaud_200802’);

END;

/

RESULT: PL/SQL procedure successfully completed.

24. Create an empty non-partitioned interim table (int_registrationaudit) in the new tablespace.

CREATE TABLE int_registrationaudit
TABLESPACE reg_data_tbs02

AS (SELECT * FROM registrationaudit WHERE 1=0)

/

RESULT: Table created.

25. Start the redefinition process.

BEGIN

DBMS_REDEFINITION.START_REDEF_TABLE

(

'reg',

'registrationaudit',

'int_registrationaudit',

NULL,

DBMS_REDEFINITION.CONS_USE_ROWID,
NULL

‘regaud_200802’

);

END;

/

RESULT: PL/SQL procedure successfully completed.

26. Manually create local indexes on the interim table
CREATE UNIQUE INDEX int_registrationaudit_pk

ON int_registrationaudit (regno, transactinid, transactiondate)

TABLESPACE reg_idx_tbs01

/

RESULT: Index created.

CREATE INDEX int_regaud_idx01

ON int_registrationaudit (regname)

TABLESPACE reg_idx_tbs02

/

RESULT: Index created.

CREATE INDEX int_regaud_idx02
ON int_registrationaudit (custno)

TABLESPACE reg_idx_tbs01
/

RESULT: Index created.

CREATE INDEX int_regaud_idx03
ON int_registrationaudit (expirationdate)

TABLESPACE reg_idx_tbs01
/

RESULT: Index created.

27. Optionally synchronize the interim table int_registrationaudit.

BEGIN

DBMS_REDEFINITION.SYNC_INTERIM_TABLE

(

'reg',

'registrationaudit',

'int_registrationaudit'
‘regaud_200802’
);

END;

/
RESULT: PL/SQL procedure successfully completed.

28. Complete the redefinition.

BEGIN

DBMS_REDEFINITION.FINISH_REDEF_TABLE

(

'reg',

'registrationaudit',

'int_registrationaudit',
‘regaud_200802’

);

END;

/

RESULT: PL/SQL procedure successfully completed.

29. Drop the interim table

DROP TABLE int_registrationaudit
/

RESULT: Table dropped.

Observations and Issues

Listed below are observations and issues discovered while performing the two test cases.

· All procedures were executed successfully using the Oracle 10.2.0.3 AIX testing environment. Note that during previous testing with an Oracle 9.2.0.5 AIX environment, executing the FINISH_REDEF_TABLE procedure resulted in a database server crash and an ORA-00600 error was logged (internal error code, arguments: [kkzumco2:2], [], [], [], [], [], [], []). Oracle Corporation identified the problem as an instance of Bug #3865157 caused when a redefined table contains multiple constraints. The bug is applicable to 9.2.0.5 and 10G Release 1. The fix became available in 9.2.0.7 and 10g Release 2.
· Functions used during data transformations are not permitted to contain queries. Doing so will return an ORA-12015 error (cannot create a fast refresh materialized view from a complex query).

· All rows in the original table are created in the interim table with defined transformations applied when the redefinition is started. Therefore, an amount of space equivalent to that used by the original table and indexes must be allocated for the interim table.
· Rows in the interim table may only be manipulated by performing a sync with the original table using the SYNC_INTERIM_TABLE procedure. Any attempt to perform DML on the interim table will return an ORA-01732 error (data manipulation operation not legal on this view).

· The ability to automatically clone grants, constraints and triggers using COPY_TABLE_DEPENDENTS, introduced in Oracle 10g, has greatly simplified the redefinition process compared to previous versions. In Oracle 9i, the absence of this feature required all dependent objects to be manually created on the interim table. In addition, the interim objects had to be named differently from those on the original table and later manually renamed to those used in the original table after the redefinition completed and the original table dropped.
· Completing the redefinition (FINISH_REDEF_TABLE) will invalidate all stored packages and cursors defined on the original table. In addition, an exclusive lock will be obtained on the table for a short period while the original and interim objects are renamed.

Guidelines and Recommendations

Provided below are guidelines and recommendations to help identify those scenarios where using DBMS_REDEFINITION may or may not be appropriate.
· Do not use DBMS_REDEFINITION unless you have certified that it executes successfully under load conditions for your specific database and platform versions. Even a patch release may have an impact on its successful operation. Although our test cases ran error-free in an Oracle 10.2.0.3 AIX environment, earlier testing using Oracle 9.2.0.5 resulted in fatal errors.
· Do not use DBMS_REDEFINTION if an equivalent DDL command can be performed online, unless that DDL command results in unacceptable DML wait time. It is much easier and less error prone to accomplish tasks online by executing DDL commands rather that using DBMS_REDEFINITION. Completing a redefinition with DBMS_REDEFINITION always invalidates referencing stored procedures and an exclusive table lock is required for a short period, independent of the redefinition complexity. Based on the characteristics of these two methods, the following general guidelines are proposed.
Add new NULL columns using the “ALTER TABLE table ADD” command.
Add new columns with DEFAULT values and NOT NULL constraints using DBMS_REDEFINITION in Oracle 10g environments. In Oracle 11g, default values are stored in the data dictionary, so this modification can be made in sub-seconds and independent of the existing data volume. Therefore, use the “ALTER TABLE table ADD” command for this scenario in Oracle 11g environments.
Modify or rename columns using the ALTER TABLE command.
Drop columns using DBMS_REDEFINITION, unless it is not important to physically drop the column data immediately. In that case use the “ALTER TABLE table SET UNUSED COLUMN column” command to hide the column and then use the “ALTER TABLE DROP UNUSED COLUMNS” command to clean out column data during the next planned outage.
Move IOTs using the “ALTER TABLE table MOVE” command. Use DBMS_REDEFINITION to move any other table type.
Move active table partitions using DBMS_REDEFINITION, and inactive partitions using the “ALTER TABLE table MOVE PARTITION” command. Inactive partitions may include date range partitions that hold historical data for previous time periods.
Add and remove support for parallel queries using the “ALTER TABLE table PARALLEL” and “ALTER TABLE table NOPARALLEL” commands, respectively.

Reduce space fragmentation using the “ALTER TABLE table SHRINK SPACE” command. Use DBMS_REDEFINITION for fragmentation due to excessive row chaining.
· DBMS_REDEFINITION supports only very simple data transformations. New and existing columns can be populated with values calculated using existing column values in the same row. Complex transformations using functions with embedded queries are not supported. An UPDATE statement can easily perform the same data transformations as DBMS_REDEFINITION.
· A key feature of DBMS_REDEFINITION is the ability to switch out the original and redefined tables very quickly and independent of its size. Hence, it is extremely beneficial to use DBMS_DEFEINITION when performing the following tasks with very large tables.
Convert a table to a new table type (heap, partitioned, IOT)

Move a table/partition to a different tablespace

Modify physical attributes of a table

Convert between datatypes (including long, LOB, ADT)

New and Enhanced 11g DBMS_REDEFINITION Features

Oracle 11g introduces the following new and enhanced features to the DBMS_REDEFINITION package.
· Tables with materialized view logs or materialized views can be now be redefined online.
· Referencing stored packages and cursors are invalidated only if they depend on elements of the table that have been changed by the redefinition. Therefore, adding a new column during redefinition will no longer invalidate existing packages that reference other columns in the table.

1

Paper 355

_1262522970.vsd

Txn Errors

Cmd Errors

SP Invalidation

ORA-00054

DML Waits OK

SP Global Variables

SP Waits OK

OFFLINE

ONLINE

No

No

Yes

No

No

Yes

No

No

DDL Command

Yes

Yes

Yes

No

Yes

Yes

_1263398287.vsd
text

Table

View

_1263975852.vsd
X-Axis

Label

Y-Axis

X-Axis

10

2

2

1

Y-Axis

Drag the side handles to change the width of the text block.

Text block

As you add text, the rectangle's height increases. Vary the width by stretching a side.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1263382875.vsd
text

Table

View

_1262363045.vsd
X-Axis

Label

Y-Axis

X-Axis

10

2

2

1

Y-Axis

Drag the side handles to change the width of the text block.

Text block

As you add text, the rectangle's height increases. Vary the width by stretching a side.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

