Development – Application Express

Doing Web 2.0 with Application Express (APEX)
Tony Jedlinski, Konoso LLC

Overview
Give your user community the benefit of customized Web 2.0 APEX applications e.g. a Wiki, Discussion Forums, and social networking applications by installing and customizing publicly available APEX applications for your enterprise.

This paper will show you where to get access to demonstration applications and how to "stitch" them together into a suite which meets your unique goals.

The available "Web 2.0" APEX packaged apps
There is a wealth of experience in the Packaged Applications section of http://apex.oracle.com . This is a dynamic list that is updated frequently. As of late February 2008, the list of available apps is shown in Figure 1.

[image: image1.png][image: image2.png]
Figure 1

Several of these applications could be considered “Web 2.0”. By this I am referring to the Wikipedia definition “Web 2.0, a phrase coined by O'Reilly Media in 2004, refers to a perceived second-generation of Web-based service such as social networking sites, wikis, communication tools, and folksonomies—that emphasize online collaboration and sharing among users.”
In addition to Oracle’s own examples, one can find more at www.sourceforge.net by searching for “Oracle Application Express”.
Discussion forum

Simple but powerful, discussion forums are a core feature of many collaboration efforts. The APEX Discussion Forum application offers an easy to use interface with open enrollment and threaded discussions. Its features include:

· threaded discussions organized by different topics

· built-in user and forum management

· mailing-list-style forum watching

· message search feature based on Oracle Text

A typical thread is shown in Figure 2.

[image: image3.png]
Figure 2

Installation involves downloading an application and object creation script from the Oracle Packaged Applications at http://www.oracle.com/technology/products/database/application_express/packaged_apps/packaged_apps.html#FORUM
Simply run the script and import the application. You should then edit the rows in the ODF_CATEGORY table to personalize your Discussion Forum. The record with PARENT = null is the Main Category” (“IOUG OPEN Project” in Figure 3) and the records with it as parent are the Sub Categories (“Design” , “APEX Application Development” and “Volunteer Communication” in Figure 3). These form the base structure for your application upon which your users will build their own threads.
[image: image4.png]
Figure 3

Ask the Expert

This is the actual application that supports the well known http://asktom.oracle.com website where Tom Kyte has helped an incalculable number of Oracle users. This app, including the enhancements Tom has added over the years, is perfect for organizations that have their own experts and are looking for a way to manage their communication with the users they support. Its features include:
· Users can post questions to an expert and the expert can answer.

· powered by interMedia for text search

· expert can limit the number of questions allowed or block new questions completely

· expert can request additional information on questions

· expert decides when to publish a question

To install, download from http://www.oracle.com/technology/products/database/application_express/packaged_apps/packaged_apps.html#ASK
and install the application and all supporting objects. I then recommend you poke around the sample data to become familiar with the application. When you are ready to customize, refer to the readme.txt file for instructions on how to add administrators and remove the sample data. Figure 4 shows the home page of a newly configured installation.

[image: image5.png]
Figure 4

YouTube Integration

The You Tube integration demo produces a powerful graphically rich application that demonstrates XML-RPC style Web Services, specifically integrating YouTube services. It is shown in Figure 5 below.

[image: image6.png]
Figure 5

Studying this application will give you insight into how to define and call web services e.g. those from You Tube (Figure 6). Note the illustration below only shows a portion of the functionality in this application. Please refer to the demonstration application for additional details.
[image: image7.png]
Figure 6
Once this service is defined, it is called in the APEX form with the process shown in figure 7.

[image: image8.png]
Figure 7

Then the report region can reference the data stored in the collection “youtube_by_category” as shown in Figure 8.
[image: image9.png]
Figure 8

Wiki

A wiki application for APEX was written by Oracle’s Carl Backstrom and is now an open source project on sourceforge.net http://oracle-apex.svn.sourceforge.net/viewvc/oracle-apex/wiki/ . Wiki stands for “What I Know Is” and is an application where users add their knowledge to that of others by making additions and edits to topics. Figure 9 is a view of the APEX wiki.
[image: image10.png]
Figure 9

Rather than use HTML, which can be a bit daunting to the average user, wikis have their own syntax for linking and formatting. For example, putting two sets of square brackets around a [[word]] makes that word a new topic and the word and hyperlink to that topic. This takes a bit of behind the scenes processing which Carl cleverly does in a function named twiki_do_301 (see figure 10).

create or replace function twiki_do_301(

 p_input clob)

return clob

is

 p_output clob;

begin

 dbms_lob.createtemporary(p_output, FALSE, dbms_lob.session);

 dbms_lob.copy(p_output, p_input, dbms_lob.getlength(p_input));

 --p_output := replace (p_output, chr(10),'<xnl />');

 -- URL

 p_output := regexp_replace(p_output, '(\[\[)(http://.*?)(\]\])','\2');

 -- Topic Twiki Syntax

 p_output := regexp_replace(p_output, '([A-Z]{1}[a-z]+[A-Z]{1}[a-z]+)','\1');

 p_output := regexp_replace(p_output, '(\[\[)([^]]*)(\]\])','\2');

 --

 p_output := regexp_replace(p_output, '(**)([^*]*)(\1)','\2',1,0,'m');

 -- <u>

 p_output := regexp_replace(p_output, '(__)([^_]*)(\1)','<u>\2</u>',1,0,'m');

 -- <hr />

 p_output := regexp_replace(p_output, '---','<hr />',1,0,'m');

 -- <center>

 p_output := regexp_replace(p_output, '[*]{1}[:]{1}([^!]*)[:]{1}[*]{1}','<center>\1</center>',1,0,'m');

 p_output := regexp_replace(p_output, '[\-]{1}[\+]{1}([^!]*)[\+]{1}[\-]{1}','<pre>\1</pre>',1,0,'m');

 p_output := regexp_replace(p_output, '[\-]{1}[\=]{1}([^!]*)[\=]{1}[\-]{1}','<div class="title">\1</div>',1,0,'m');

 /* */

 -- why doesn't this work? it works in sql statement but not in plsql

 p_output := regexp_replace(p_output, '^[!]([^!].*)','<h1>\1</h1>',1,0,'m');

 p_output := regexp_replace(p_output, '[*]{1}[!]{1}([^!]*)[!]{1}[*]{1}','<h1>\1</h1>',1,0,'m');

 p_output := regexp_replace(p_output, '[*]{1}[!]{2}([^!]*)[!]{2}[*]{1}','<h2>\1</h2>',1,0,'m');

 p_output := regexp_replace(p_output, '[*]{1}[!]{3}([^!]*)[!]{3}[*]{1}','<h3>\1</h3>',1,0,'m');

 p_output := regexp_replace(p_output, '[*]{1}[!]{4}([^!]*)[!]{4}[*]{1}','<h4>\1</h4>',1,0,'m');

 p_output := regexp_replace(p_output, '[*]{1}[!]{5}([^!]*)[!]{5}[*]{1}','<h5>\1</h5>',1,0,'m');

 p_output := replace (p_output,chr(10), '
');

 return p_output;

end twiki_do_301;

Figure 10

This function uses a CLOB as input and output and modifies it by doing a series of regular expression replace commands to search for special syntax such as the double square brackets and replace them with the corresponding HTML.
For example:

 [[word]]
would be replaced by
word
 which will render as a clickable link to the new topic, “word”. Thus, the user has both modified the existing page and created a new topic for further discussion. Likewise, any line feed characters CHR(10) will be replaced by HTML break command
 .
The Wiki application is also a good example of the use of Oracle ConText for “google” like indexing of the document text. First, the developer needs to create ConText indexes on the columns to be searched (topic and body). The command to do this is in the install script (Figure 11):
CREATE INDEX "TWIKI_BODY_IDX" ON "TWIKI" ("BODY")

 INDEXTYPE IS "CTXSYS"."CONTEXT"

/

CREATE INDEX "TWIKI_COMP_IDX" ON "TWIKI" ("TOPIC")

 INDEXTYPE IS "CTXSYS"."CONTEXT"

/
Figure 11
The search page query uses the CONTAINS expression to take advantage of these indexes (Figure 12).
select

id,

id "Edit",

topic "Wiki Page", score(1), score(2)

from twiki

where ((CONTAINS(topic, :P701_SEARCH, 1) > 0

or CONTAINS(body, :P701_SEARCH, 2) > 0)

or UPPER(topic) = UPPER(:P701_SEARCH))

and curr = 1

order by score(1) + score(2) desc
Figure 12

The end result is powerful search functionality, but it must be periodically refreshed in order to be aware of new entries. The commands to refresh these indexes are:

CTX_DDL.SYNC_INDEX('TWIKI_COMP_IDX', '2M');

CTX_DDL.SYNC_INDEX('TWIKI_BODY_IDX', '2M');
Refreshing can either be a manual operation (e.g. a refresh button on the search page) or automated in a DBMS job that runs at an appropriate interval.
Other
By the time you are reading this, there will likely be additional Web 2.0 style applications available to you. Perhaps you will create the next “killer app” for APEX. If so, be sure to post it for others to use as inspiration.
Stitching apps together

If you want your users to be able to easily switch among several apps they should have a similar look and feel and share the same authentication scheme and user repository.

Switching Themes

APEX themes determine the look and feel of an application and, fortunately, are quite easy to use and copy between applications. Work within the APEX shared components (themes and templates) to develop the proper look and feel in one of your applications. Export this theme using the link at the right side of the page.

Then move to the other applications and import the theme you just exported. To activate, press the SWITCH THEMES button and select the theme you just imported. Now review each page of your application in case any adjustments are needed.
Authentication issues

If you want your users to log in only once, you will need to take the time to modify the authentication schemes and any logic referencing the user and roles tables which may vary among demo applications. The approach I recommend is to develop a custom Authentication Scheme based on the standard APEX Authentication and modify each of the applications to use that scheme.

Create a new authentication function that validates username and password against whatever tables you use. An example of such a function is shown in Figure 13.

create or replace FUNCTION "AUTHENTICATE_M_USER" (

p_username IN VARCHAR2, p_password IN VARCHAR2)

RETURN BOOLEAN IS

CURSOR m_cur(username_p VARCHAR,password_p VARCHAR) IS

SELECT COUNT(*) user_count FROM m_users

WHERE UPPER(username) = username_p

AND PASSWORD = password_p AND in_use = 'Y';

result_v BOOLEAN := FALSE;

BEGIN

FOR m_rec IN m_cur(p_username, dbms_obfuscation_toolkit.md5(input_string => p_password))

LOOP

IF m_rec.user_count = 1 THEN result_v := TRUE; END IF;

END LOOP;

RETURN result_v;

END authenticate_m_user;
Figure 13

Now edit the standard APEX authentication scheme to use this function instead of -BUILTIN- and enter a cookie name as shown in Figure 14.

[image: image11.png] [image: image12.png]
Figure 14

Now make this the “current” authentication scheme in each application.
Views into a common user repository

Some of the applications you incorporate may use their own tables for storing user information. You can either replace all references to these tables with references to one set of tables (M_USER in the above example) or drop the other user tables and replace them with a VIEW (named the same and with the same column definitions as the table you dropped) that maps each view column to the corresponding column in the “real” user table.

Use of iFrames

Another way to incorporate one or more applications into a “master” application is to use an iFrame as shown in Figure 15.

[image: image13.png]
Figure 15

 Here an LOV is used to select from a table containing links to a family of APEX applications for local user groups. The code for the HTML region containing the iFrame is (Note P6_RUG_URL is the LOV item which returns an actual URL):

<IFRAME SRC="&P6_RUG_URL."

WIDTH="1000" HEIGHT="1200"

TITLE="Regional User Group Website">

</IFRAME>
When using this approach, the iFrame actually “contains” the application identified by the LOV. It is possible that this application be in a different workspace or resides on a different server. It need not even be an APEX application!
Example

To experience an actual application that uses the wiki, discussion forum, ask the expert and other Web 2.0 functionality, go to http://www.ioug.org/open_link.cfm . You must be an active IOUG member to use this application, but Associate memberships are free of charge. The OPEN home page is shown in Figure 16.
[image: image14.png]
Figure 16

Summary

APEX applications that deliver Web 2.0 functionality are readily available from Oracle, sourceforge.net and other public sources. By studying these examples you will learn by the example of others and quickly become familiar with some advanced development techniques. Even though the applications may start out looking quite different, you can “stitch” them together to create a consistent user experience.

1

Paper #404

