Development – Application Express

The UPS and DOWNS of loading external data via APEX
Tony Jedlinski, Konoso LLC

Abstract
The APEX development environment provides powerful tools to enable one to upload and download data from Excel, Access and other file formats. This paper will demonstrate how to add this powerful upload functionality to your own APEX applications to enrich your user experience.

Introduction

An Oracle database can serve as a repository for all sorts of data including images, word processor documents, spreadsheets, videos and pretty much anything you can store on a computer. The developer has the choice of saving such files in a default table or a custom table. APEX also provides an easy means to exchange data using comma separated values (.csv) files that are readily viewed in spreadsheet applications such as Excel or .XML files that can carry all sorts of information and are visible to many different applications. Most of the details are readily available in APEX documentation and forum posts, so this paper will attempt to catalog APEX file upload and download techniques without providing every detail.
The basics

Creating tables from a spreadsheet

To get a quick start on your applications, use APEX’s import tools (Figure 1) to create tables and load data. If you can provide data in the form of a spreadsheet you can easily create a new table or populate an existing table.
[image: image1.png]
Figure 1

Text data to be imported should be in comma separated values (.csv) or tab delimited. If the data is less than 30KB, you can simply copy and paste from a spreadsheet, otherwise save the spreadsheet as .csv. Next review and adjust the attributes Oracle suggests for you using the screen in Figure 2. A few more clicks and your table is built and loaded with data.
[image: image2.png]
Figure 2

XML data is assumed to be in a simple canonical format (see Figure 3 for an example of a two column four row table) and using the APEX wizard can only be imported into an existing table. This feature is handy when copying data from one APEX instance to another. Be alert, however, that the data to be loaded does not violate any referential integrity constraints or you will receive a rather cryptic error.

[image: image3.png]
Figure 3

Downloading APEX table data

It’s just as easy to create a .csv file or .xml file using the APEX Data un-load tool and specifying the table you wish to download. You can even specify a “where clause” to limit the results. These files are a perfect match for the upload tools previously discussed, but be careful about data tables that may contain special characters that could be confused with the default delimiters such as commas, double quotes and tabs. You may need to specify unique delimiters such as ~ under those circumstances.

Normalizing data
Often data imported from spreadsheets contains repetitive entries that should be normalized by converting to a foreign key relationship to a lookup table. APEX provides a means to automate this in a few clicks. Figure 4 illustrates a simple table that should be normalized. The column MEMBER_TYPE should be a foreign key rather than plain text.

[image: image4.png]
Figure 4

To access this wizard, press the Create Lookup Table button at the right side of the screen. Make the proper column selection and OK the new objects to be created (see Figure 5).
[image: image5.png]
Figure 5

Once again, in few clicks the data is normalized (see figure 6). The original table has a column MEMBER_TYPE_ID in place of MEMBER_TYPE and a new MEMBER_TYPE_LOOKUP table is created. All the data is populated and the foreign key constraint has been created. With this often overlooked feature, one can easily turn a loosely organized set of spreadsheet tables into a properly constructed set of database tables.

[image: image6.png]
[image: image7.png]
Figure 6

Creating tables from MS Access files

To copy small amounts of data from MS Access to APEX, simply copy the data from Access and paste into Excel then follow the import spreadsheet steps shown above. If the data is less than 30 KB, you can paste the data directly into the APEX wizard.

More complex Access to Oracle migrations should be done using the Oracle SQL Developer Migration Workbench and the APEX Application Migration Workshop. An overview of this process is provided on a link to the right side of the APEX developer environment home page. An illustration from this overview is shown in Figure 7.

[image: image8.png]
Figure 7

Full details are provided in an Oracle whitepaper you can download from http://www.oracle.com/technology/products/database/application_express/migrations/tutorial.html
Download links for reports
Any APEX report can easily be downloaded as a .csv file. To enable a download link (.csv format) simply indicate the link text and file name in the report parameters as shown in figure 8.

[image: image9.png] [image: image10.png]
Figure 8

Much more comprehensive reports can be designed using the settings behind the Print tab. If your system is properly configured you can generate a .pdf or MS Word format file. A glimpse of the settings and resulting output are shown in Figure 9.

[image: image11.png]
[image: image12.png]
Figure 9

Using standard file upload / download methods
One of the powerful features of the Oracle database is its ability to store binary documents in a table with a column of type BLOB. APEX leverages this functionality by providing a simple means of uploading documents to an internal table and then downloading them at will. The default table WWV_FLOW_FILES (a.k.a. APEX_APPLICATION_FILES) where the documents are stored is owned by FLOWS_xxxxxx user and managed automatically by APEX.
Uploading
Adding document upload functionality to your APEX application is as simple as first creating an ITEM of type “File Browse” to identify the document to be saved. First create the “file browse” item (as shown in Figure 10) in a region of your application. Upon clicking the BROWSE button, the user is presented with standard file locator window (varies by browser).

[image: image13.png]
Figure 10

When the page is submitted, automatic row processing will cause the file to be assigned a numeric ID and be saved in the WWV_FLOW_FILES table. To be able to retrieve this file later be sure to create an “after submit” computation to copy the file browser item (which will contain the file ID APEX assigned to your file) to a database item in the form. Figure 11 below is an example of the computation to copy SUBMITTED_FILE (the file browser item) to P23_SUBMITTED_FILE (a database item).

[image: image14.png]
Figure 11

Downloading

To retrieve saved documents create a link using the htf.anchor function with its inputs set to the file_name you saved in the uploading process. Create a region of type report with a query that joins the table in which the file name and ID are stored (in this example ARTICLES) to the WWV_FLOW_FILES table (Figure 12).

[image: image15.png]
Figure 12

The report produced by this query is shown in Figure 13. Clicking on the original file link will bring up the SAVE FILE dialog enabling the user to save the file locally.

[image: image16.png]
Figure 13

The original file remains in the WWV_FLOW_FILES table regardless of how many times it is downloaded. To save space and keep the WWV_FLOW_FILES file clean, you should delete documents from this table when no longer needed (e.g. when the record referencing the uploaded file is deleted.) APEX will not do this for you automatically.
As an alternative to coding htf.anchor in your report code, use the built in APEX column link settings to create a download link in a report. Put the file ID saved previously into a report column and link to the URL p?n=#ID# (where in this example ID is the name of the table column where the file ID was stored when uploaded) This would look like Figure 14...
[image: image17.png]
Figure 14

Advanced upload / download methods

The default methods can be adapted to work with uploaded files in your own tables, allowing you to isolate your data from the images, .css files and other objects APEX stores in the WWV_FLOW_FILES table. Tables used to store files must contain a few specific column types to store the actual file and its associated characteristics. A typical table definition is shown in Figure 15.

[image: image18.png]
Figure 15
Saving files in your own tables

The simplest way to save a file to your own table is to allow APEX to temporarily save it to WWV_FLOW_FILES then immediately copy it to your own table then delete the row APEX created in WWV_FLOW_FILES. This is typically done in an “on submit’ procedure as shown in Figure 16. Note: in this example the file is being identified by its name and some additional information specified at download time is also being stored.
[image: image19.png]
Figure 16

Writing your own download procedure

OK, now that the file is saved in your own table, you need to write a download procedure to extract it. Just adopt the code in Figure 17 to your own table / column names. BE SURE TO GRANT EXECUTE ON THIS PROCEDURE TO PUBLIC (or at least the APEX DAD user) or else the procedure won’t work in your form.

create or replace PROCEDURE "DOWNLOAD_COMMUNITY_FILE" (p_file IN NUMBER)

AS

 v_mime VARCHAR2 (48);

 v_length NUMBER;

 v_file_name VARCHAR2 (2000);

 lob_loc BLOB;

BEGIN

 SELECT mime_type,

 blob_content,

 SUBSTR (NAME, INSTR (NAME, '/') + 1),

 DBMS_LOB.getlength (blob_content)

 INTO v_mime,

 lob_loc,

 v_file_name,

 v_length

 FROM community_files

 WHERE community_file_num = p_file;

 --

 -- set up HTTP header

 --

 -- use an NVL around the mime type and

 -- if it is a null set it to application/octect

 -- application/octect may launch a download window from windows

 OWA_UTIL.mime_header (NVL (v_mime, 'application/octet'), FALSE);

 -- set the size so the browser knows how much to download

 HTP.p ('Content-length: ' || v_length);

 -- the filename will be used by the browser if the users does a save as

 HTP.p ('Content-Disposition: attachment; filename="' || v_file_name || '"');

 -- close the headers

 OWA_UTIL.http_header_close;

 -- download the BLOB

 WPG_DOCLOAD.download_file (lob_loc);

END download_community_file;

Figure 17
Now the Column Link URL can be used in a report to allow the user to download the file as shown in Figure 18. Note the column link will display the NAME of the file, but its numerical ID (COMMUNITY_FILE_NUM) is being passed to the download procedure.

[image: image20.png]
Figure 18
Adding security to download procedures
It is advisable to add a little extra security to your download procedure so that the download URL can only be used while a user is a valid APEX user. Figure 19 shows some additional code that can be added to validate a user by checking to see if he/she is a valid user and has a valid APEX session cookie. Adopt this code to reference your own user dictionary instead of MY_USERS.
CREATE OR REPLACE PROCEDURE "DOWNLOAD_MY_FILE" (

 id_in IN NUMBER,

 username_in IN VARCHAR2)

IS

 CURSOR valid_user_cur (username_v VARCHAR2)

 IS

 SELECT mu.user_num

 FROM my_users mu,

 my_user_statuses mus

 WHERE UPPER (mu.e_mail_address) = UPPER (username_v)

 AND mu.my_user_status_num = mus.my_user_status_num

 AND mus.code IN ('*','A') ;

 v_mime VARCHAR2 (48);

 v_length NUMBER;

 v_file_name VARCHAR2 (2000);

 lob_loc BLOB;

 sql_text_v VARCHAR2 (4000);

 file_name_v VARCHAR2 (4000);

 access_type_id_v PLS_INTEGER;

 valid_user_v BOOLEAN;

 app_user_v VARCHAR2 (4000);--Look up this user from his cookie

 Htmldb_Custom_Auth.set_session_id(Htmldb_Custom_Auth.get_session_id_from_cookie);

 app_user_v := UPPER (Htmldb_Custom_Auth.get_username);

 IF UPPER (username_in) <> app_user_v

 THEN

 HTP.P ('You are not authorized to access this server. (User mis-match)');

 RETURN;

 END IF;

 valid_user_v := FALSE; --initialize

 FOR valid_user_rec IN valid_user_cur (username_in)

 LOOP

 valid_user_v := TRUE;

 END LOOP;

 IF valid_user_v = FALSE

 THEN

 HTP.P

 ('You are not authorized to access this server. (unauthorized user)');

 RETURN;

 END IF;

 --OK to download
(Continue with download file code from Figure 17)
Figure 19

Uploading spreadsheet data using copy / paste
To provide a simple way for end users to populate a table in your APEX app, build a tool which allows them to copy and paste spreadsheet data.

Provide clear instructions for the user
To help ensure success, I recommend that you provide the user with clear instructions in an HTML region. This region should tell the user:

1. How many columns are expected

2. The contents expected in each column

3. A link to download a blank spreadsheet (already properly formatted) to use as a template.

4. Detailed instructions

Uploading the data

Below the instructions region, construct an interface that allows the user to upload and verify. Oracle provides a helpful “how to” page on this topic at http://www.oracle.com/technology/products/database/application_express/howtos/howto_create_upload_spreadsheet_form.html

Running the script supplied here will create a package PROCESS_UPLOAD and some tables to create a working example. This package uses string array processing to parse the pasted data and insert it into a table.

Next, following the steps in the above link you can create a sample application that allows you to populate the STAGE_CARS table by copy and paste from a spreadsheet. The demo app you create is illustrated in Figure 20 below.

[image: image21.png]
Figure 20

By adapting the procedure from this example to use your own tables, you can build powerful functionality that empowers your users to quickly populate tables. The PROCESS_UPLOAD package is well commented and with a general knowledge of PL/SQL can easily be adapted to your specific needs. The main limitation of this approach is the 32KB limit for HTML input fields. One can work around this by copying and pasting larger spreadsheets in multiple small pieces.
Enabling end-users to create Oracle tables from spreadsheets
Oracle has provided some clever examples that enable one to create logic in an APEX application that allows the user to create an Oracle table from data in a .csv file from a spreadsheet. This example is based on the code at http://htmldb.oracle.com/pls/otn/f?p=38131:1: (Figure 21).
[image: image22.png]
Figure 21
First, download and install the HTMLDB_TOOLS package from the second link at the above URL. You may also download the demo application and install it in your own APEX workspace.
 Providing good instructions
One thing the example does not explain is that there are a few requirements which must be met for the .csv spreadsheet file to be properly interpreted. Specifically these instructions should be provided to the user in a simple HTML region.
Row 1: Must contain the column names Note: Column Names must be one word without special characters. Do not use Oracle Reserved words for your column names.
Row 2: Must contain the column TYPE designation using proper Oracle syntax.

The APEX page for .csv uploads must contain some hidden fields to communicate with the HTMLDB_TOOLS package. If, for example, your download page is P20 the fields would be:
P20_HEADINGS (A hidden item used internally by the htmldb_tools package for the column headings of the table to be created)

P20_COLUMNS (A hidden item used internally by the htmldb_tools package for the column headings of the collection)
P20_DDL (A hidden item used internally by the htmldb_tools package for the create table DDL)
The upload procedure
When the UPLOAD FILE button is pressed, execute an APEX process with the following code:

htmldb_tools.parse_file(:P20_FILENAME,'P20_COLLECTION','P20_HEADINGS',
'P20_COLUMNS','P20_DDL');
This will process the input file (:P20_FILENAME) and populate the table htmldb_collections with the data from the spreadsheet in a collection called P20_COLLECTION and set the hidden fields described previously.

Providing a means to view the data before creating the table

The example also includes an APEX report (based on the following PL/SQL function body returning SQL query) to display the collection created:
declare

 q long;

begin

 q := 'select '||:P20_COLUMNS||' from htmldb_collections where collection_name=''P20_COLLECTION''';

 return q;

end;
The results will look something like Figure 22.

[image: image23.png]
Figure 22
Creating the table
When the CREATE TABLE button is pressed, execute an APEX process with the following code:

htmldb_tools.parse_file(:P20_FILENAME,'P20_COLLECTION','P20_HEADINGS',
'P20_COLUMNS','P20_DDL',:P20_TABLENAME);

This is essentially the same as the UPLOAD FILE button except than now the table name is specified (i.e. the contents of :P20_TABLE_NAME item.) Now the package will

1. Drop the table named in :P20_TABLE_NAME (if it already exists)

2. Create a new table by that name with columns specifications per the first two rows of the spreadsheet.

3. Insert the data from spreadsheet rows 3 and higher into the table just created.

Now that you understand how the basic package works, you are free to modify it to add additional functionality such as the schema in which to create the table and other custom logic.
Summary

The APEX development framework provides functionality to allow the developer to easily transfer data using .csv and XML files. This applies to initially populating the tables upon which one’s application is based as well as providing powerful tools for users to save their own files.

1

Paper 406

