Development – Database Programming (e.g. SQL, PL/SQL, SQLPLus)

To Ansi or not to Ansi
Rumpi Gravenstein, Amtrust Bank

Mike Costello, Amtrust Bank
Bob Maurer, Amtrust Bank

Abstract
With release 9i, in 2002, Oracle introduced support for the ANSI SQL join syntax. Many Oracle professionals didn't see much need for ANSI joins and thought of it just as an attempt to stay compliant with emerging RDBMS database standards. Further confounding the issue, the new syntax didn't add must have new features. That type of thinking misses the point entirely. Oracle professionals take note. Writing ANSI compliant SQL improves code clarity and reduces the number of errors in your SQL statements. This presentation will first review ANSI SQL join syntax and then discuss how best to use it and how not to use it. Finally, we will discuss why we believe that the additional clarity inherent in the ANSI syntax should make it a key element in your efforts to develop maintainable, error free SQL statements.

Introduction
In our experience we have found much misunderstanding of ANSI SQL; what it looks like and how best to use it. In fact, we came across practices in our company that actively discouraged its use. This paper is our effort to throw some light on the relevant issues.
First, some background. In 1999, the ANSI group published an update to the SQL standards, often referred to as SQL/99 or SQL/1999. That’s the standard to which all RDBMS vendors strive to comply. In 2001, with the release of 9i, Oracle supported the ANSI syntax specified in the 1999 standard. For the purposes of this discussion, we will limit our comments to Oracle’s implementation of the SQL/99 join standard.
Let’s start with the three basic join types: equi-joins, outer-joins, and cross or cartesian joins. Equi-joins, the most common join, are joins between tables where a column in one table matches with a column in another table. Most joins are equi-joins. On the other hand, outer joins, refer to joins where columns in one table are joined to columns in another table that may not have matching values. Finally, the cross or cartesian join, matches every row in one table with a row in the other table. We’ll go into more detail on each of these join conditions next.

A Comparative Join Review
We all know equi-joins as we use them everyday. The way Oracle professionals have been writing these joins for years looks something like:

SELECT e.ename AS Employee_name,

 d.deptno,

 d.dname AS Department_name

 FROM emp e,

 dept d

 WHERE e.deptno = d.deptno;
Notice the predicate line, e.deptno = d.deptno which sets the equi-join condition. There are a couple of important aspects to this SQL statement. First, in this example the join column names in the emp and dept tables are the same. Second, since the joined column names appear in both tables they must include a table qualifier to let the SQL engine resolve the column source, here either the table alias e or d. Without the table qualifier Oracle will generate a “column ambiguously defined” error. Now that same statement can be expressed with an ANSI natural join like so:

SELECT ename AS employee_name,

 deptno,

 dname AS department_name

 FROM emp

 NATURAL JOIN dept;
This SQL statement displays a number of ANSI characteristics. First, there is no comma separating the tables in the from clause. Instead we now have ANSI syntax specifying how the tables should be joined. In this case the natural join syntax provides the SQL engine instructions that say, if column names match between the tables, join them. The net affect of that instruction is that the column found in both tables, dept_no, is used to join the tables. Second and not as obvious, if the natural joined column is selected out, a table alias is not allowed. If you add the table alias Oracle will generate an invalid identifier error. All of this is very different from what us long time Oracle developers are used to and if not understood can cause some confusion. Now for a little editorial, although we love ANSI SQL, we don’t like natural joins as they are dangerous. Consider a maintenance effort in which a column is added to table that happens to be the same as a column in another table. An existing natural join between these two tables will automatically change to use this new column. That can easily happen with the addition of standardized audit columns. Yikes!
The simple natural equi-join we have been discussing can also be expressed by this, ANSI join variant:

SELECT d.dname,

 deptno,
 e.ename
 FROM emp e
 JOIN dept d USING (deptno);
Again, there is no comma between the emp and dept tables and the natural keyword is missing with only the join syntax left. The using clause that appears after the dept table is new and provides a place where an explicit list of comma separated join columns can be specified. The using clause assumes that the column names are the same in both tables, if not; rest assured that Oracle will return an error. What’s nice about the using clause is that you no longer have to write ANSI joins worrying about what might happen with a natural join when new columns are added whose names duplicate other table column names. Finally, we should point out that like with natural joins, columns included in the using clause may not have table aliases.
There is one last ANSI equi-join variant, a join using the on clause.
SELECT d.dname,

 e.ename

 FROM emp e
 JOIN dept d ON (e.deptno = d.deptno);
Using the on clause is like writing the traditional Oracle join, except for the fact that the join condition appears between the from and where clause and not in the where predicate. Of the three equi-join ANSI variants we prefer this last one as there is nothing implied which might confuse or later cause problems.
Multiple Table Equi-join
Enough with the simple joins. Let’s look at this more involved three table join:
SELECT e.empno,

 l.loc_id,

 d.dname,

 l.state_tx

 FROM locations l

 JOIN dept d ON (d.location_id = l.id)

 JOIN emp e ON (d.deptno = e.deptno);
It’s worth repeating that unique to ANSI joins is the absence of the commas we are all used to between the table names. They have been replaced by ANSI “join” syntax. In this example, we are using the on to identify how the tables are joined. With ANSI join syntax, the first table in the from clause never includes join syntax. The second table can “see” all the tables, to the left or before it, and join to them, but none of the tables to the right, or after it. That’s another distinguishing ANSI characteristic.

Let’s look at this SQL to illustrate some of variants:
SELECT e.emp_id,

 l.city,

 d.dept_name,

 d.deptno

 FROM locations l

 INNER JOIN dept d ON (d.location_id = l.id)

 JOIN emp e ON d.deptno = e.deptno;
On the first join we’ve included the optional inner key word and on clause parenthesis which we did not include on the second join.

Outer Joins

Up to now we’ve focused on equi-joins, where column data between tables match. Now we are going to look at joins where matching column data can not always be found, the outer join. Traditional Oracle outer joins are expressed by using the (+) outer join operator. For instance in the following SQL
SELECT e.ename,

 d.dname

 FROM emp e,

 dept d

 WHERE e.deptno (+) = d.deptno
it is understood that all the rows in the dept table will be returned, and that where no matching deptno in the emp table can be found, a “null” row will be added. Thus the emp table, the table column with the (+) operator, is expanded to include rows not actually in the table. By definition that’s called an outer join. ANSI joins, with the more explicit and verbose syntax, can express the same join with
SELECT e.ename,

 d.dname

 FROM dept d

 LEFT OUTER JOIN emp e

 ON (e.deptno = d.deptno);
Reading this statement it is very similar to the ANSI equi-join syntax except for the fact that we now have the words left outer appearing before join. Outer is optional, left is not. In the ANSI syntax, left points to the table that drives the query. Left makes sense if you consider that the sql statement can be written in one long line, starting with select and then appending each succeeding line to the right. If you do that, it becomes clear that the keyword left is pointing at the dept table. So what this ANSI query is saying is take the driving table, dept, and for every row in that table match it, if possible, to a row in the emp table where the deptno column matches. If you can’t find a matching deptno row in the emp table, create one, and assign all of it’s columns a NULL value.
Now let’s look at some variants of the same join.

SELECT e.ename,

 d.dname

 FROM dept d

 NATURAL LEFT JOIN emp e;

or
SELECT e.ename,

 d.dname

 FROM dept d

 LEFT JOIN emp e USING (deptno);
That should look familiar as we’ve seen this syntax before with equi-joins. For the same reasons we don’t like natural with equi-joins, we don’t like it with outer-joins. The also legal using syntax is better, but has it’s own set of problems which we will discuss in a bit.

Take a look at another version of the same sql
SELECT e.ename,

 d.dname

 FROM emp e

 RIGHT OUTER JOIN dept d

 ON (e.deptno = d.deptno);
We’ve switched the table order, specifying the emp table before the dept table and switched the outer join key word from left to right. The keywords left and right point to the driving table. Since in this query right points to the dept table, we have written a logically equivalent query.
There is one last type of outer join, the full outer join. A full outer join returns all the rows from both tables, matching the rows where possible, and when not possible supplying a null record. This concept is not easily expressed with traditional Oracle join syntax. In fact, while researching this topic we discovered a number of authors who presented
SELECT e.ename,

 d.dname

 FROM emp e, dept d

 WHERE e.deptno (+) = d.deptno

UNION

SELECT e.ename,

 d.dname

 FROM emp e, dept d

 WHERE e.deptno = d.deptno (+)
as a full outer join. Let’s deconstruct what is going on here. Start by taking a look at the first query in the union. It is the outer join we have seen before. The join returns all the records in the dept table, finding matching rows in the emp table where possible, and if not, providing a null emp record. The second query is doing the reverse. This query is returning all the records in the emp table and finding matching rows in the dept table where possible. By definition that’s an outer join. But we’re not done. There’s a union operation going on which adds the records returned from the first query with those returned from the second query while removing the duplicate rows, i.e. those records where there exists an inner join match, as we only want those records once, either from the first or second query but not both. That seems logical enough. Now let’s take a look at the explain plan generated by this query.

Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=15 Card=28 Bytes=588)

 1 0 SORT (UNIQUE) (Cost=15 Card=28 Bytes=588)

 2 1 UNION-ALL

 3 2 HASH JOIN (OUTER) (Cost=7 Card=14 Bytes=294)

 4 3 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=3 Card=5 Bytes=60)

 5 3 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=3 Card=14 Bytes=126)

 6 2 HASH JOIN (OUTER) (Cost=7 Card=14 Bytes=294)

 7 6 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=3 Card=14 Bytes=126)

 8 6 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=3 Card=5 Bytes=60)

What’s that sort (unique) doing? Why it’s taking all the rows from the first and the second queries, sorting them, and returning the unique results. Is that OK? No, it’s not. What if one of the tables involved in the full join had duplicate records? Those duplicates would be removed and we would not be getting all the rows from that table, resulting in an incorrect answer. Luckily, there is a way to correctly specify a logical full outer join with the traditional Oracle join syntax. Consider

SELECT e.ename, d.dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno(+)
UNION ALL
SELECT NULL, d.dname
 FROM dept d
 WHERE NOT EXISTS
 (SELECT 1
 FROM emp e
 WHERE e.deptno = d.deptno)
Deconstructing this query it is clear that the union all removes the issues introduced with the sort unique. But, will the rest of the query return what we want? The outer join in the first query returns all the records in the emp table and those from the dept table where a match can be found. All that’s left to find is those records in the dept table that don’t have a match in the emp table. That’s the job of the not exists correlated subquery . So this, ever so complicated query, is a valid representation of a full outer join. Just for grins, lets take a look at the explain plan for this query
Execution Plan

--

 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=13 Card=16 Bytes=324)

 1 0 UNION-ALL

 2 1 HASH JOIN (OUTER) (Cost=7 Card=14 Bytes=294)

 3 2 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=3 Card=14 Bytes=126)

 4 2 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=3 Card=5 Bytes=60)

 5 1 HASH JOIN (ANTI) (Cost=7 Card=2 Bytes=30)

 6 5 TABLE ACCESS (FULL) OF 'DEPT' (TABLE) (Cost=3 Card=5 Bytes=60)

 7 5 TABLE ACCESS (FULL) OF 'EMP' (TABLE) (Cost=3 Card=14 Bytes=42)

No sort distinct operation in this plan. That’s what we wanted. A nice benefit of loosing the sort is a corresponding drop from 15 to 13 in the statement cost.
Now let’s take a look at how this same join can be expressed with the ANSI syntax

SELECT e.ename,

 d.dname

 FROM emp e

 FULL OUTER JOIN dept d

 ON (e.deptno = d.deptno);
Here the required full and optional outer keywords indicate that the table to the left and right are in a full table join. As in prior cases the on phrase identifies the joined columns. This is the only case where ANSI syntax, with all those extra words, is actually shorter than the traditional Oracle join syntax. It should be noted that the ANSI full syntax can work with the natural and using clauses just like in our equi-join examples.

Cross or Cartesian Joins

That leaves one last join type to consider, the cross or cartesian join. A cross join is a table join where rows in one table are not matched with rows in another table. In fact every record in one table is matched with every record in the “joined” table. Consider the following SQL

SELECT emp_id,

 ename,

 dname

 FROM emp e,

 dept d

WHERE d.deptno = 10;
Here the emp and dept table’s are not joined. Only a filter on the dept deptno column exists. Typically this is an error condition where a programmer has forgotten to add a required join condition like e.deptno = d.deptno. ANSI compliant SQL expresses the same join as

SELECT emp_id,

 ename,

 dname

 FROM emp e

 CROSS JOIN dept d

WHERE d.deptno = 10;
which unambiguously states that a cross join is desired. We like the ANSI syntax as it’s clear to all that the programmer intended to have a cross join and didn’t inadvertently write one.
ANSI Correlated Join

Let’s take a look at a couple of joins that illustrate some of the less obvious aspects of ANSI joins.

SELECT empno,

 ename

 FROM emp e

 WHERE EXISTS

 (SELECT NULL

 FROM dept d

 INNER JOIN locations l

 ON (l.loc_id = d.loc)

 WHERE d.deptno = e.deptno

);
We wanted to show this query as it highlights a couple of key points. First, ANSI joins can only work with other tables in the same from clause. Thus the dept table shown in this query has no ‘ANSI” vision to the emp table. In fact, the only way to join the dept table to the emp table is to use the traditional style where predicate syntax shown.
Let’s look at another sample correlated query.

SELECT *

 FROM dept d

 INNER JOIN locations2 l

 USING (loc)

 WHERE EXISTS

 (

 SELECT NULL

 FROM emp e

 WHERE e.loc = l.loc

)

ORA-25154: column part of USING clause cannot have qualifier
The Oracle error clearly identifies what is wrong with this query. As we have mentioned, when using the natural or using syntax, the joined columns can not include table aliases. The l.loc reference is violating that rule. What’s important here is that you must fight your natural instinct to remove the “l” table alias in the correlated subquery. Do that and you will have one of those insidious scope of reference issues with both sides of the WHERE e.loc = loc predicate clause referring to the same column in the emp table. That’s a problem here because Oracle always resolves un-aliased columns to the nearest table, in this case emp. That’s why we prefer that ANSI joins always use the on clause.
ANSI Outer Join Filtering

Let’s take a look at the following statement paying particular attention to the join filter on salesman.
SELECT d.deptno, e.ename, e.job
 FROM dept d
 LEFT JOIN emp e
 ON (e.deptno = d.deptno
 AND e.job = 'SALESMAN');
DEPTNO ENAME JOB

====== ====== ========
30 ALLEN SALESMAN
30 WARD SALESMAN
30 MARTIN SALESMAN
30 TURNER SALESMAN
50
40
20
10
Placing the filter within the on clause results in the filter being applied before the join is executed. If the filter had been applied after the join was executed, the DEPTNO rows of 50, 40, 20, and 10 would have been filtered out as those records don’t have a JOB of SALESMAN. Placing the filter in the predicate, results in Oracle applying the filter after the join is executed with the following results:
SELECT d.deptno, e.ename, e.job
 FROM dept d
 LEFT JOIN emp e
 ON (e.deptno = d.deptno)
 WHERE e.job = 'SALESMAN';
DEPTNO ENAME JOB

====== ====== ========
30 ALLEN SALESMAN
30 WARD SALESMAN
30 MARTIN SALESMAN
30 TURNER SALESMAN
ANSI vs. Traditional: A Comparative Analysis
Now that we have an understanding of the join syntaxes, let’s take a closer look at the relative merits of each approach. We are going to start that comparison by looking at what we believe is the most important differentiator, code clarity. Here’s a piece of traditional SQL pulled out of one of our production systems.

SELECT /*+ qb_name(orig) */

 fdla.dim_borrower_v_id dim_borrower_v_id

 FROM dim_as_of_date_vw daod,

 dim_daily_loan_applctn_detl ddlad,

 dim_disbursement_date_vw dddv,

 dim_loan_originator dlo,

 fact_daily_loan_application fdla,

 dim_loan_applctn_status_vw dlasv

 WHERE daod.dim_as_of_date_v_id = ddlad.dim_as_of_date_v_id

 AND daod.dim_as_of_date_v_id = fdla.dim_as_of_date_v_id

 AND ddlad.dim_daily_loan_applctn_detl_id =fdla.dim_daily_loan_applctn_detl_id

 AND ddlad.dim_as_of_date_v_id = fdla.dim_as_of_date_v_id

 AND dddv.dim_disbursement_date_v_id = fdla.dim_disbursement_date_v_id

 AND dlo.dim_loan_originator_id = fdla.dim_loan_originator_id

 AND dlasv.DIM_LOAN_APPLCTN_STATUS_V_ID = fdla.DIM_LOAN_APPLCTN_STATUS_V_ID

 AND NOT (dlasv.STATUS_CODE BETWEEN '700' AND '740')

 AND NOT (dlasv.status_code BETWEEN '000' AND '429')

 AND daod.as_of_calendar_date = (CASE WHEN in_DATE_SLICE IS NULL THEN

 LAST_DAY (ADD_MONTHS (TRUNC(SYSDATE), -1)) +

 c_DEFAULT_SLICE_OFFESET

 ELSE TO_DATE(in_DATE_SLICE, c_DATE_FORMAT)

 END
)

 AND dddv.disburse_date BETWEEN

 TRUNC(NVL(TO_DATE(in_START_REPORT_MONTH,c_DATE_FORMAT),
 ADD_MONTHS(SYSDATE, -1)), 'MM')

 AND TRUNC(
 LAST_DAY (NVL(

 TO_DATE(in_END_REPORT_MONTH,c_DATE_FORMAT),

 ADD_MONTHS(SYSDATE, -1))))

 AND ddlad.loan_transfer_status_code != 'T'
Unfortunately, it is important to have some complexity in our sample to help illustrate the issue. Looking at this piece of code, can you quickly determine the join conditions? How much effort would you need to determine if a join condition is missing? Factor into your evaluation that this code is already fairly clean in that the table joins are in order at the beginning of the predicate clause. How much more effort would you require if the table filters and joins were randomly distributed throughout the predicate? That’s something we’ve seen happen as maintenance efforts typically add new join conditions and filters at the end of the predicate instead of in the middle.
Now let’s take a look at exactly the same SQL written using the ANSI join syntax.

SELECT /*+ qb_name(orig) */

 fdla.dim_borrower_v_id dim_borrower_v_id

 FROM dim_as_of_date_vw daod

 INNER JOIN fact_daily_loan_application fdla

 ON (daod.dim_as_of_date_v_id = fdla.dim_as_of_date_v_id)

 INNER JOIN dim_daily_loan_applctn_detl ddlad

 ON (ddlad.dim_as_of_date_v_id = daod.dim_as_of_date_v_id

 AND ddlad.dim_daily_loan_applctn_detl_id =

 fdla.dim_daily_loan_applctn_detl_id

 AND ddlad.dim_as_of_date_v_id = fdla.dim_as_of_date_v_id)

 INNER JOIN dim_disbursement_date_vw dddv

 ON (dddv.dim_disbursement_date_v_id = fdla.dim_disbursement_date_v_id)

 INNER JOIN dim_loan_originator dlo

 ON (dlo.dim_loan_originator_id = fdla.dim_loan_originator_id)

 INNER JOIN dim_loan_applctn_status_vw dlasv

 ON (dlasv.dim_loan_applctn_status_v_id = fdla.dim_loan_applctn_status_v_id)

 WHERE NOT (dlasv.STATUS_CODE BETWEEN '700' AND '740')

 AND NOT (dlasv.status_code BETWEEN '000' AND '429')

 AND daod.as_of_calendar_date = (CASE WHEN in_DATE_SLICE IS NULL THEN

 LAST_DAY (ADD_MONTHS (TRUNC(SYSDATE), -1)) +

 c_DEFAULT_SLICE_OFFESET

 ELSE TO_DATE(in_DATE_SLICE, c_DATE_FORMAT)

 END
)

 AND dddv.disburse_date BETWEEN

 TRUNC(NVL(TO_DATE(in_START_REPORT_MONTH,c_DATE_FORMAT),
 ADD_MONTHS(SYSDATE, -1)), 'MM')

 AND TRUNC(
 LAST_DAY (NVL(

 TO_DATE(in_END_REPORT_MONTH,c_DATE_FORMAT),

 ADD_MONTHS(SYSDATE, -1))))

 AND ddlad.loan_transfer_status_code != 'T'
The ANSI version groups the table join conditions together in the from clause, making them easy to find and even easier to maintain. New join conditions have to be put in the from clause and can never be mixed with the predicate filters.
Perhaps join code clarity can most easily be explained with the following ANSI pseudo code.
SELECT col1,

 col2,

 ...

 FROM tab1 t1

 [join type] tab2 t2

 [join condition]

 ...

 WHERE ...
The ANSI from clause forces the SQL developer to specify a join type and condition. With this syntax, it is impossible to inadvertently perform a cross join, a relatively easy mistake to make with a complicated traditional join. It is also more difficult to miss a join condition as the relevant joins are grouped together. This additional code clarity reduces programming error rates and increase programmer productivity.
Join Flexibility
Although Oracle has not been very vocal on their inner or cross join preferences, they do strongly recommend using ANSI outer join syntax. They make this recommendation because the traditional (+) outer join syntax has the following restrictions not present with ANSI outer joins:

· You cannot specify the (+) operator in a query block that also contains from (ANSI) clause join syntax.

· The (+) operator can appear only in the where clause or, in the context of left-correlation (that is, when specifying the table clause) in the from clause, and can be applied only to a column of a table or view.

· If A and B are joined by multiple join conditions, then you must use the (+) operator in all of these conditions. If you do not, then Oracle Database will return only the rows resulting from a simple join, but without a warning or error to advise you that you do not have the results of an outer join.

· The (+) operator does not produce an outer join if you specify one table in the outer query and the other table in an inner query.

· You cannot use the (+) operator to outer-join a table to itself, although self joins are valid. For example, the following statement is not valid:

SELECT employee_id, manager_id

 FROM employees

WHERE employees.manager_id(+) = employees.employee_id;
· However, the following self join is valid:

SELECT e1.employee_id, e1.manager_id, e2.employee_id

 FROM employees e1, employees e2

WHERE e1.manager_id(+) = e2.employee_id;

· The (+) operator can be applied only to a column, not to an arbitrary expression. However, an arbitrary expression can contain one or more columns marked with the (+) operator.

· A where condition containing the (+) operator cannot be combined with another condition using the or logical operator.

· A where condition cannot use the in comparison condition to compare a column marked with the (+) operator with an expression.

· A where condition cannot compare any column marked with the (+) operator with a subquery.

Installed Code Base

There’s also the issue of what to do with the code you’ve written over the years. That code is almost assuredly written with the traditional join syntax. Someone is going to need to be able to support those programs and understand the SQL. In this light a switch to ANSI looks very expensive indeed. But consider the alternative. If you run a multi RDBMS vendor shop, and have some SQL Server or DB2 or MySQL or… databases that you also have to support, you may already have the ANSI syntax knowledge you need. In our case we found that more shrink wrapped databases were being installed all the time and that our DBA and development/support staff increasingly needed to be able to understand both syntaxes. That added a little bit of training but gave the business the flexibility to purchase best of breed applications and be confident that IT could support the underlying database technology.

Training Effort
Most of us have been using traditional SQL through all of our years of working with Oracle. We are very familiar with how to write traditional syntax joins. As new programmers are hired in, we train them up in what we know and they are good to go. Every once in a while we may make a join mistake but that’s part of any programming effort.

On the other hand, you could train everyone in the use of ANSI and traditional join syntax. Learning the ANSI syntax does require some effort, but as you’ve seen, doesn’t require mensa capabilities. What you get for that effort is that the resulting sql is more readable and flexible; therefore easier to maintain. Finally if you support multiple RDBMS vendor technologies, you get training that can be applied to all of your databases, and not just Oracle.
Conclusion
We believe that all new SQL should be written using the ANSI join syntax. Existing code should gradually be converted as maintenance is applied. We believe this for the following reasons:
· ANSI join syntax is clearer. In all things code, additional clarity brings untold maintenance benefits. This reason alone should be enough to convince you to start using the ANSI sql join syntax.
· ANSI join syntax is more flexible. Oracle actually recommends that you write ANIS outer join syntax and not traditional joins. They make this recommendation as there are a number of restrictions present with the traditional syntax not present with the ANSI syntax.

· ANSI syntax improves cross RDBMS support skills. Since ANSI join syntax is universally accepted, learning this language will help you with your work on other vendor technologies.

· Supporting ANSI join syntax will require some additional training for long time Oracle Professionals. That’s an expense that should rapidly pay for itself.

10

Paper #420

