
Made from the Same Mold: 
Templating Approaches for 

Fusion Applications

Peter Koletzke
Technical Director & 
Principal Instructor

Paper #439

2

Survey
• Java development

– 1-2 years?
– 3-12 years?
– More than 12 years?

• JDeveloper
– 1-3 years?
– More than 3 years?
– 10.1.3.x?
– 11g preview?

• Template work
– Which technologies?

3

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

Slides and white paper are 
on the IOUG website.

4

Why Templates?
1. Enhance user productivity

– Consistent look and feel means users can 
quickly grasp how an application works 

– No need to relearn a technique for each 
page

2. Improved maintainability
– Common elements are in only one place
– Changes to these elements require 

minimal coding
– Reuse is a GRBP



5

The Process in JDeveloper 10g
1. Select the template file in the 

navigator
2. Select File | Save As and locate the 

new directory
3. Name the file and click Save
• This creates a copy of whatever was 

in the template
• Objective: reference as much

as possible in the template

Example: IOUG Home Page
HeaderHeader

FooterFooter

Nav BarNav Bar ContentContent

7

Approaches
• Applies to Java EE code

– JavaServer Pages (JSP), for 
example

– Can also be applied to other types of 
code: standard HTML, Oracle 
Forms?

• Different levels of file use
1. Single common elements file
2. Multiple common elements files

8

Single Common Elements File
• Template is a single JSP file

– Includes header, footer, and nav bar
– Includes area for contents to be included

• Controller determines which page to 
include

– jsp:include
• All pages show a single template 

file with contents specific to 
the function



9

Single Common Elements File

Content 1

Content 2

Content 3

Content 4Template Page

Content Pages

<include content>

10

Single Common Elements File
• Benefits

– Four-cell layout does not need to be 
repeated on each page

• Easier to change look and feel (LAF)
• New pages are less work to create

– Only one file to change if design 
changes, no change to contents pages

• Drawback
– Non-standard use of Controller

• Requires routing code for page flow

11

Multiple Common Elements Files

• One JSP file for each common area
– header.jsp
– navbar.jsp
– footer.jsp

• Four-cell arrangement is coded into 
each content page
– Cells use jsp:include to display the 

common element files
• Template files have no cell layout

12

Multiple Common 
Elements Files

Template Pages
Content Pages

<include header>

<include footer>

<incl
nav
bar>

Content 1

<include header>

<include footer>

<incl 
nav
bar>

Content 2

<include header>

<include footer>

<incl 
nav
bar>

Content 3

<include header>

<include footer>

<incl 
nav
bar>

Content 4



13

Multiple Common Elements Files
• Benefits

– Common template areas used by all pages (same 
as Include Content)
• Content pages in this case hold includes for common 

elements

– No special Controller code is required
• Can use more declarative code

• Drawback
– Layout cells repeat on each page

• If this design changes, all pages need 
to be changed

• Can do a lot with copy and paste in the 
Structure window

14

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

15

Review: ADF Faces
• Oracle-invented, open source, JavaServer 

Faces (JSF) tag library
– F.k.a., ADF UIX
– Rich UI components: tables, trees, shuttles, 

date and color pickers
– AJAX-like operations using JavaScript & XML

• Supports multiple display formats
– Web browser, wireless, telnet
– Being used to develop Fusion

Applications
• Well-supported in JDeveloper

16

Skins in ADF Faces
• May be needed in conjunction with 

templates to supply common LAF
• Skins are style sheets and a resource 

files for text in the component
• Use them to highly customize the 

appearance
• Default skin for ADF Faces is 

BLAF (a.k.a.,”oracle”)



17

Oracle Browser Look And Feel
• BLAF: a highly evolved UI standard 

– 300+ pages of documentation
– Includes page flow standards
– www.oracle.com/technology/tech/blaf

• Used in Oracle E-Business Suite
– EBS is coded in UIX but the same design 

applies to ADF Faces
• If you have EBS applications, this 

might be a logical choice
• The skin assignment is easy to 

change
18

Changing Skins
• Single property for all pages in application

– adf-faces-config.xml - in WEB-INF directory
– Change the property skin-family
– Three default skins – oracle (BLAF), minimal, 

simple

19

Oracle Skin

20

Minimal Skin
Simple 

Skin



21

“I Don’t Like Those Skins”
• Fine. Then roll your own.

– Be sure to dedicate enough time to this task
– Read up before beginning (references coming up)

• Skins use style sheets and a resource bundle 
(for text inside the components)
– Your work is mostly in the style sheets

• Start by extending the simple skin
• Declare CSS selectors to override 

the simple skin defaults
• Register the skin in adf-faces-skins.xml

The white paper 
contains information 
about reference 
documents to use if 
you want to roll 
your own.

22

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

23

First: What Does the Java 
Community Offer?

• Nothing in the Java EE standards yet
• Lots of frameworks

– None natively supported in JDeveloper
– They are all supported as is any Java 

framework
• Some popular frameworks

– Tiles
– Facelets
– Velocity

24

Tiles
• Struts heritage

– Still part of Struts
– Use with the Struts controller framework
– Standalone version on the horizon

• “Standalone Tile” or “Tiles2”

• Good for applications that use Struts
– If you’re doing JSF, you may 

not be doing Struts
• JSF has a native Controller

• struts.apache.org/struts-tiles



25

Facelets
• Destined to be a standard for Java EE 

apps
• More than templates, but good support 

of all template concepts
• Facelets home page discusses 

integration with JDeveloper
• A strong contender for new JSF 

apps that need Java EE support
• facelets.dev.java.net

26

Velocity
• Apache Velocity Engine

– Open source
– Used for web pages and more

• Includes a scripting language
– Conditional and iteration statements

• Enforces MVC design
– Different programmers can work on 

different parts
• velocity.apache.org

27

Native JSP Tag
• jsp:include
• Standard JSP tag for embedding pages 

inside other pages
• Example, in template.jsp

– <jsp:include 
page="/regions/leftNavBar.jsp"/>

• Tags from the leftNavBar.jsp
page are rendered when 
this tag is reached 
in template.jsp

If you use 

JSTL, consider 

c:import 

instead

28

Now What About ADF Faces?
• af:region

– An ADF Faces component
• Advantages over jsp:include

– It’s a JSF component
• JSF backing bean support – programmatic 

control
– It’s an ADF Faces component

• More properties: binding, rendered, 
attributeChangeListener

• More likely to have enhancements



29

Using af:region
• Scenario: You want to include 

header.jspx inside template.jspx
1. Create header.jspx with its contents 

inside af:regionDef tags
2. Register header.jspx as a region 

component in region-metadata.xml
3. Use af:region in template.jsp to 

reference the component
• Code samples later

30

Sidebar: ADF Faces Container 
Components

• ADF Faces supplies a number of container 
components
– Components into which you put other components
– Each one has a specific behavior and facets 

(prebuilt locations for components)
– Usually, af:panel<something>

• The following example uses af:panelBorder
– This provides facets for top, bottom, left, right, 

start, end (and “inner” versions of all those)
We’ll use top, 

left, and 
bottom.

31

1. header.jspx

<!-- boilerplate tags created by New Gallery JSF JSP Wizard 
here -->

<af:regionDef var="attrs">
<af:objectImage source="/images/nocougtop.jpg"/>

</af:regionDef>

<!-- boilerplate JSP tags created by New Gallery -->

• Used for the header part of the template
• Create a JSF JSP in a regions directory
• Remove the af:view tag and its children
• Repeat for navbar.jspx and footer.jspx

32

2. region-metadata.xml

<!-- boilerplate tags created by JDeveloper here -->
<component>
<component-type>

hrapp.view.region.Header
</component-type>
<component-class>

oracle.adf.view.faces.component.UIXRegion
</component-class>
<component-extension>
<region-jsp-ui-def>

/regions/header.jspx
</region-jsp-ui-def>

</component-extension>
</component>

• This file is created when you add the first af:regionDef tag to any 
JSP

• Add sections for navbar and footer



33

3. template.jspx

<!– boilerplate intro tags from JSF JSP Wizard here -->
<h:form>
<af:panelBorder>
<f:facet name="top">
<f:subview id="topMargin">
<af:region id="topMargin" 

regionType= "hrapp.view.region.Header"/>
</f:subview>

</f:facet>
<f:facet name="bottom"/>
<f:facet name="left"/>

</af:panelBorder>
</h:form>
<!-- more boilerplate tags -->

Reference the region 
component using the 

“component type” name.

• Add af:panelBorder
• Embed af:region inside f:subview in the facet

34

Finishing Off the Template
• Add another region for the Footer region
• Add another region for the NavBar region
• The visual editor will show template.jspx

with the includes taking effect
• At runtime, the regions will be 

included just as in the visual editor

Gotcha: If you make a change to region-
metadata.xml, the Visual Editor may not update. 
View | Refresh will not even work. The solution: 
Save All, close JDeveloper, and reopen JDeveloper. 

35

Eureka!

• Copy template.jsp each time 
you want to create a JSF 
JSP

• Place content inside the 
container (outside facets) 
– It will show up here

36

Templates in JHeadstart
• The JHeadstart plug in (extra cost item) 

creates code with templates at its core
– Velocity to generate JSF View and 

Controller code 
– Everything is based on a template
– af:region to provide template reuse

• Learning the Velocity template language 
is helpful
– You can get close to (even attain?) 

100% generation if you do



37

Agenda

• Approaches for template use

• Common ADF look-and-feel options

• Templates with ADF Faces

• Conclusions and the Future

38

What to Do?
• Non-ADF shops using JDeveloper can plug 

Facelets into JDeveloper
• ADF shops use af:region

– JHeadstart can speed up development 
• Automatically use Velocity templates currently

– Seriously consider creating a skin
• Lots of work, though

• For future ADF Faces work:
– Examine JDeveloper 11g

• Strong templating features
• Preview version on OTN

– Any work with templates now will 
help with JDev 11g later

39

JDev 11g – Create a Template 
• New gallery item 

for JSF template
• Add container 

components
• Define facets

– Your own layout 
areas

• Add arguments
– Can transfer data 

from page to 
template

40

JDev 11g – Use the Template 
• Application’s 

templates 
appear in the 
JSF Page dialog
– Use Page Template 

pulldown
• The layout elements

are referenced 
from the template

• Like af:panelBorder except you define the 
facets



41

Summary
• Templates help user productivity
• Templates ease maintenance
• Several approaches to template use

– Reference as much as possible
• The Java community has many frameworks

– E.g., Tiles, Facelets, Velocity
• ADF Faces offers af:region
• ADF Faces assists common look-and-feel with 

skins
• JDev 11g will have more template support

– Work with templates now!

42

Designer
Handbook
Designer
Handbook

Developer
Advanced
Forms & Reports

Developer
Advanced
Forms & Reports

JDeveloper 3
Handbook
JDeveloper 3
Handbook ORACLE9i

JDeveloper
Handbook

• Founded in 1995 as Millennia Vision 
Corp.

• Profitable for 7+ years without outside 
funding

• Consultants each have 10+ years 
industry experience

• Strong High-Tech industry background
• 200+ clients/300+ projects
• JDeveloper Partner
• More technical white papers and 

presentations on the web site

http://www.quovera.com

Books co-authored with Dr. Paul Dorsey, 
Avrom Roy-Faderman, & Duncan Mills
Personal web site:
http://ourworld.compuserve.com/homepages/Peter_Koletzke

ORACLE
JDeveloper 10g
Handbook

Please fill out the evals – paper 439


