Development: Application Express

Creating Visual Impact
with Custom APEX Templates and Themes
David Scott, Intec Billing, Inc.
Introduction

Abstract

Application Express (ApEx) is a powerful development environment, but all too often the resulting applications lack graphic style and impact. This session explains how ApEx themes and templates are constructed, and explores the resources and techniques that can increase visual impact in ApEx applications.

Approach

Let me warn you up front; I’m not an ApEx, CSS, HTML, or JavaScript expert. Instead of presenting from the ‘expert’ vantage point, this presentation explores what I’ve found as I’ve needed to ‘beef up’ the graphic impact of my applications for customer use.
I’ll try to touch on how ApEx pages are put together, how to create more visual impact, and a bit of my approach to implement designs in Apex. What this presentation does NOT do, however is:
· Deal with all the dirty little tricks that need to be learned to make pages ‘do what you want’

· Teach CSS or JavaScript programming

· Tell you exactly how to do ‘that’ (whatever ‘that’ is)

· Concentrate on creating Themes for sale – business use is assumed.
Well, given those limitations, I’ll probably tick off a bunch of people! On the other hand, if you are curious about how to enliven your ApEx applications, there are certainly some things you may want to think about.

On the shoulders of giants…

I would be remiss not to acknowledge the tremendous skills and knowledge of the people who have contributed to the Application Express software, ApEx.oracle.com, the Application Express forum, IOUG presentations, and the multitude of blogs that have enriched my work environment. Alas, I do not know these people personally and any effort to name them all is doomed to embarrassment.
However, I would like to recommend the following names as the known ‘tip of the iceberg’ and as people whose efforts, demos, and opinions are worth following:

Carl Backstrom, Dimitri Gielis, Joel Kallman, Denes Kubicek, Tony Jedlinski, Tyler Muth, David Peake, John Scott, Marc Sewtz, Scott Spadafore, Scott Spendolini. Patrick Wolf, Vikas
Understanding ApEx Templates

How can I figure out what’s going on?

It is easy to become bewildered by the Application Express environment, particularly if you are comfortable with more code-oriented approaches to development. However, the ApEx development environment is very well crafted and thought-out, so once you get your bearings, things progress rather quickly. OF course, you would never commit to a major design project unless you’re comfortable with the ApEx approach, would you?
Use ApEx to drill down to the elements you are interested in

No matter what your level of expertise, the primary interface for template and theme development is ApEx itself. To find the elements that you wish to inspect or modify, you can take one or both of two approaches.
The first approach is to move to the Shared Components page and select the items you wish to work with from there. This approach is particularly useful when first creating new templates, or when copying templates that will be modified. Just move to the Shared Components page and choose the Templates link; you will see a page similar to this:
[image: image1.png]
Figure 1 - Shared Components > Tempates
The second method to access templates is to work from within the Edit Page for the pages of your application. This method is most useful for ‘tweaking’ and modifying the templates once they have been associated with a particular page in the application.

[image: image2.png]
Figure 2 - Template links on the Edit page
Use Firebug or other debugging tools

Another great way to take a look ‘behind the curtain’ is to use Firebug or other browser debugging plug-ins to inspect the HTML, CSS, and Javascript that contained in the resulting web pages. As you gain familiarity with these tools, you will understand how ApEx templates affect the resulting HTML and CSS.
TIP: Create a test application

My development team often creates small test applications to demonstrate a particular technique or concept. This approach is particularly useful when working with themes and templates; it allows you to work creatively without disturbing more important applications. And if you have ever thoroughly skewered a properly working application with ‘improvements’, you’ll understand why I insist on this technique. The scars are still healing…
What am I seeing?

Tables

For the most part, the primary approach for ApEx page design is to use tables to create basic page layouts and CSS formatting to control the ‘look’ of a page beyond its basic structure. This hybrid approach might irritate developers who prefer a ‘pure’ CSS approach, but allows ApEx to maintain a higher degree of compatibility with current browsers. Even the #4 Minimal design uses tables; I have yet to see a theme that is purely CSS-driven.
Personally, I have no problem with the table-driven approach; it is well-understood by most developers and can even reduce complexity when compared to the box model of CSS designs.

Classes, classes everywhere

It won’t take you long to identify the ApEx naming convention for CSS classes within a Theme. The ‘t##Stylename’ convention identifies the CSS styles/classes that are shipped for theme ## (the ## being a number) with ApEx. If you want more information about the naming conventions, take a look at the ApEx forum post (forums.oracle.com/forums/thread.jspa?messageID=2399475); Carl Backstrom goes into how ApEx CSS classes are named and how they are used as CSS selectors.
Can you name and create your own CSS classes? Absolutely; you can either add them inline, pull them from a custom CSS file (highly recommended), or modify the existing CSS files. Beware – modifying existing CSS files can cause a bit of confusion, especially if used for existing templates.
Template Basics

In ApEx, a template is a piece of code that serves as the ‘skeleton’ of a section of HTML. These templates use substitution strings to insert other templates and content from the database to create the pages that the user sees.
The available substitution strings vary according to which template is being edited. For example, the Header section of page templates can include the following tags:
· #ONLOAD# - This substitution is typically included as part of the opening <body> tag; i.e. <body #ONLOAD#>. The #ONLOAD# value would likely be JavaScript that varies for each page.

· #TITLE# - The title of the page.

· #NAVIGATION_BAR# - The navigation links (LOGOUT, Help)

· #FORM_OPEN# - Commands to begin an HTML form.

· #NOTIFICATION_MESSAGE# - a summary of inline error messages is displayed.

· #SUCCESS_MESSAGE# - The message that identifies a successful INSERT, UPDATE, or DELETE.

· #GLOBAL_NOTIFICATION# - Typically used for system-wide messaging such as server downtime alerts, etc.

· #HEAD# - Other information for the HEAD section of the HTML page.
By the way, did you know that the ApEx online documentation lists all the substitution strings and a good description for each one? Search for “Page Template Substitution Strings” in the online help! In addition, these substitution strings are available using the built-in label help on the template editing screens; you might also want to search on a substitution string in the Application Express forums at apex.oracle.com.

Page Templates

Obviously, pages are the major building blocks of ApEx applications. However, not all pages are created equal, nor should they be.
As a designer, you need to consider the layout of a page in tandem with the content of the page. The layout of the page is controlled by a page template, and multiple page templates are available. For example, an application’s login page will normally be generated from a different template than the one used for content pages, and error pages will again have a different template.
Page templates contain the placeholders for other templates, and thereby control the behavior and visual impact of the web page.
What does a page template look like?

To view a template visually: go to Shared Components / Templates, then click on the ‘traffic light’ icon to view the template.
[image: image3.png]
Figure 3 - One Level Tabs with Sidebar (Theme 12)

If we compare the “with Sidebar” template to the ‘plain’ version, we can see the differences.
[image: image4.png]
Figure 4 - One Level Tabs (Theme 12)

And of course, page templates change (sometimes dramatically) from theme to theme.
[image: image5.png]
Figure 5 - One Level Tabs with Sidebar (Theme 11)
To view the code for a template: from Shared Components / Templates, click on the title of the template to view its underlying code. The code will be split into separate sections for the page’s header, body, and footer.
For Theme 12, the One Level Tabs code looks like this:

Header code:
<html lang="&BROWSER_LANGUAGE.">

<head>

<title>#TITLE#</title>

<link rel="stylesheet" href="#IMAGE_PREFIX#themes/theme_12/theme_V3.css" type="text/css" />

#HEAD#

</head>

<body #ONLOAD#>#FORM_OPEN#
The header code is the HTML that creates the HEAD section of the HTML page. These are the items that come before the BODY of the HTML document. Pay particular attention to the CSS entries that are in this section, and you might also modify the template to include any custom JavaScript libraries that you intend to use.
Include substitution strings to include dynamic content; you can click on the label’s Help link while editing a template to show which values are applicable to the section of the code you are editing. For more information, use the online Help system and “Find” the substitution string which interests you.

One important detail to notice is that the HEAD section includes a <link> to the CSS file which controls the template appearance. Another useful <link> for the HEAD section is to include a JavaScript (*.js) file.
Body Code:

<table class="t12PageBody" cellpadding="0" cellspacing="0" width="100%" summary="">

<tr><td colspan="2" class="t12ApplicationLogo"><table width="100%" border="0" cellpadding="0" cellspacing="0" summary=""><tr><td>#LOGO##REGION_POSITION_06#</td>

<td width="100%">#REGION_POSITION_07#
</td>

<td>#REGION_POSITION_08#</td></tr></table></td></tr>

 <tr>

 <td class="t12UserName">&APP_USER. #NAVIGATION_BAR#</td>

 <td align="right" valign="bottom"><table cellpadding="0" cellspacing="0" summary=""><tr>#TAB_CELLS#</tr></table></td>

 </tr>

 <tr><td colspan="2" class="t12VerticalBar"></td>

</tr>

 <tr>

 <td colspan="2">#REGION_POSITION_01#</td>

 </tr>

</table>

<table width="100%" summary="" height="70%">

 <tr>

 <td class="t12ContentBody" valign="top"><div class="t12Messages">#GLOBAL_NOTIFICATION##SUCCESS_MESSAGE##NOTIFICATION_MESSAGE#</div>

#BOX_BODY##REGION_POSITION_02##REGION_POSITION_04#</td>

 <td align="right" valign="top" class="t12ContentBody">#REGION_POSITION_03#
</td>

 </tr>

</table>
The Body code is the primary definer of your page’s look and feel. It is important to include the #REGION_POSITION_xx# substitution strings so that the remainder of your dynamically-generated content can be included.
Footer Code:

<table class="t12PageFooter" width="100%" cellpadding="0" cellspacing="0" summary="">

<tr><td align="right">#CUSTOMIZE#</td></tr>

<tr><td class="t12FooterTop"> </td></tr>

<tr><td class="t12FooterBottom"> </td></tr>

</table>

#REGION_POSITION_05#

#FORM_CLOSE#

</body>

</html>
Obviously, the Footer code section is available to ‘finish out’ the page properly and include any remaining dynamic content. You won’t want to forget the #FORM_CLOSE# substitution string and the closing body and html tags.
Region Templates

A large variety of region templates are included in most themes. The most commonly included ones are:

· Borderless Region

· Bracketed Region

· Breadcrumb Region

· Button Region with Title

· Button Region without Title

· Chart List

· Chart Region

· Form Region

· Hide and Show Region

· List Region with Icon

· List Region with Icon (Chart)

· List Region with Icon (Report)

· Navigation Region (and Alternatives)

· Region without Buttons and Title

· Region without Title

· Report List

· Reports Region

· Reports Region 100% Width

· Reports Region (and Alternatives)

· Sidebar Region (and Alternatives)

· Wizard Region

· Wizard Region with Icon
The names of these templates are rather descriptive, so I’ll not describe each of them. The easiest way to take a look at the template layout is to use Application 40722 - Theme Testing App (Has One Of Everything). This application is available from apex.oracle.com, and is often referred to in the Application Express forum.
As an example of Region template content, here’s the code for the Reports Region from Theme 12 (Blue):
<table class="t12ReportsRegion" id="#REGION_ID#" summary="">

 <tr>

 <td class="t12Header">#TITLE#</td>

 </tr>

 <tr>

 <td class="t12ButtonHolder">#CLOSE# #PREVIOUS##NEXT##DELETE##EDIT##CHANGE##CREATE##CREATE2##EXPAND##COPY##HELP#</td>

 </tr>

 <tr>

 <td class="t12Body">#BODY#</td>

 </tr>

</table>
Essentially, this code identifies the necessary CSS classes, provides a location for region buttons, and places the #BODY# substitution string – and not much else. Simple, but powerful.
Within another theme, the same Region template can become a bit more complex. This example is taken from Theme 10 (Sand):
<table class="t10ReportsRegion" id="#REGION_ID#" border="0" cellpadding="0" cellspacing="0" summary="">

<tr>

<td width="7"></td>

<td class="t10RegionHeader"><table border="0" cellpadding="0" cellspacing="0" summary="">

<tr>

<td></td>

<td class="t10RegionTitle">#TITLE#</td>

<td width="7"></td>

</tr>

</table></td>

<td></td>

</tr>

<tr>

<td class="t10RegionLeft"></td>

<td class="t10ButtonHolder" align="right">#CLOSE# #PREVIOUS##NEXT##DELETE##EDIT##CHANGE##CREATE##CREATE2##EXPAND##COPY##HELP#</td>

<td class="t10RegionRight"></td>

</tr>

<tr>

<td class="t10RegionLeft"></td>

<td class="t10RegionBody">#BODY#</td>

<td class="t10RegionRight"></td>

</tr>

<tr>

<td></td>

<td class="t10RegionFooter"></td>

<td></td>

</tr>

</table>
As you can see, images have been added and the overall layout is a bit more complex. However, the basic functionality remains the same.
Report Templates

In many ApEx applications, Report templates are the most important design feature of the application. They may seem a bit complex at first, but are not too difficult to understand. As usual for ApEx, the label help for each field in the template contains necessary information – do not overlook this as you begin your modifications, and make sure that you read the online documentation (page-level help link) as well.
The Report template contains the usual naming and subscription information, and then is broken down into these fields:

· Before Rows – Usually contains <table> and #TOP_PAGINATION#; this section is displayed at the beginning of a report.

· Column Headings – Usually contains heading formatting (color, etc.) and the <th> and </th> information. Can be left blank if no headings are desired.

· Before Each Row- Contains the <tr> tag, but not the Column Template information.

· Column Templates (4 available) – Contains the <td> and </td> tags, alignment, class information, and the #COLUMN_VALUE# substitution. Conditional expressions are available, which can be very powerful.

· After Each Row – Usually just </tr>.

· After Rows – Closes the table, shows the CSV link and pagination. If PPR is used, the JavaScript goes here.

· Row Highlighting – Controls highlight colors for checked rows and for mouseover.

· Pagination Sub-template – Controls how user pagination choices are displayed
As with the Region templates, the easiest way to take a look at a Report template layout is to navigate to the appropriate page within Application 40722 - Theme Testing App (Has One Of Everything).
Label Templates

By comparison to pages, regions, and reports, Label templates are rather simple. From a visual impact perspective, there is rarely any need to modify these beyond the CSS that is called, and a significant amount of functionality is available through substitution strings. Four fields are defined:

· Definition: Before Label – This HTML is shown before the item label.

· Definition: After Label – This HTML is shown after the item label.

· Error Display: On Error Before Label – Controls the HTML for inline validation error display.

· Error Display: On Error After Label – Completes the HTML for inline validation error display.
The label help gives more information about what can be included; take a look!
List Templates

There are many different types of List templates; the customary ones are:

· Button List

· DHTML List (Image) with Sublist

· DHTML Menu with Sublist

· DHTML Tree

· Horizontal Images with Label List

· Horizontal Links List

· Tabbed Navigation List

· Tree List

· Vertical Images List

· Vertical Ordered List

· Vertical Sidebar List

· Vertical Unordered Links without Bullets

· Vertical Unordered List with Bullets

· Wizard Progress List
If you want to begin your learning with a reasonable template, take a look at the Vertical Sidebar List template. On the other hand, the DHTML List (Image) with Sublist template shows the full capabilities of List template objects, and could cause brain cell damage if you are not prepared for the onslaught…
The template fields are:

· Before List Entry – This sets up the <table> that contains the list.

· Template Definition – Group of these settings:

· List Template Current – HTML to contain a current list entry.

· List Template Current with Sub List Items – HTML for a sublist entry.

· List Template Noncurrent – HTML for a non-current list entry. If this is blank, List Template Current will be used.

· List Template Noncurrent with Sub List Items – HTML for the noncurrent sublist

· Between List Elements – If you want pictures or something between list entries, this is the place to put them.

· Before Sub List Entry – HTML before the sublist, naturally.

· Sub List Entry – the Sub List entry HTML. It has the same sections as the Template Definition group.

· After Sub List Entry – closes the Sub List grouping.

· After List Entry – closes the table.
Button Templates

This is the simplest template of all! The template has only one field – Definition.
For Theme 4 (Minimal), the HTML is:

#LABEL#
For Theme 10 (Sand), the HTML is:

<table class="t10Button" cellspacing="0" cellpadding="0" border="0" summary="">

<tr>

<td class="t10L"></td>

<td class="t10C">#LABEL#</td>

<td class="t10R"></td>

</tr>

</table>
These buttons still perform essentially the same function, though the Sand theme adds images. Don’t forget that the CSS classes can also include images; this may allow you to obtain similar functionality with less HTML.
The “Alternate” forms of the buttons perform the same function, but again change the HTML or CSS characteristics to provide variety.
Breadcrumb Templates
The Template Type: Start With setting determines what children and parents will be displayed in the breadcrumb. I’ll admit it; to keep this one straight, I have to quote the label documentation (see, it works!):

· Parent to Leaf (breadcrumb style) displays the current page breadcrumb entry, its parent to the left, and so on until the root node is reached.

· Current Breadcrumb displays all breadcrumb entries in sequence with a common parent

· Parent Breadcrumb displays all breadcrumb entries for the current page's parent breadcrumb (that is, one level up from current breadcrumb).

· Child breadcrumb displays all breadcrumb entries that are children of the current page parent breadcrumb (that is peers of the current breadcrumb).
I hope you have a really creative, useful reason for choosing anything other than “Parent to Leaf” – the remainder of the options could easily prove confusing unless presented carefully. On the other hand, a breadcrumb can be displayed anywhere you choose, so proceed at your own risk.
Most of the other template attributes are familiar to anyone who has read this far. They are:

· Before First

· Current Page Breadcrumb Entry

· Non Current Page Breadcrumb Entry

· After Last

· Between Levels
There are two unique template sections for Breadcrumbs. The Maximum Levels attribute controls how ‘deep’ the breadcrumb can go. The Breadcrumb Link Attributes is a bit of a mystery, however; the documentation just says that it is used “to specify hypertext link attributes for a breadcrumb entry.” I’m afraid you’ll need to experiment with this one; I’ve never had a pressing need to use it.

Calendar Templates

When you begin editing the Calendar template, notice that the edit page actually has multiple tabs; a long list of supported date format strings is displayed at the right side.
For me, Calendar templates can be a bit complex, but if you take your time and use the built-in help, they can be de-ciphered. Tip: the “Inspect Element” feature of Firebug comes in very handy here!
For the best approach, pay particular attention to the way that the items are nested within each other. To help understand this nesting, you may want to search for each of the format strings within the page source; this quickly identifies how the elements relate to each other.
[image: image6.png]
Figure 6 - Calendar tenplate definition
Popup Templates

The great thing about Popup templates is that they are a microcosm of how pages are laid out. You can specify these attributes:

· Icon

Popup Icon

Popup Icon Attr

Popup Color Picker Icon

Popup Color Picker Icon Attr

· Search Field

Before Field Text

Filter Width

Filter Max Width

Filter Text Attributes

After Field Text

· Buttons

Find Button Text

Find Button Attributes

Close Button Text

Close Button Attributes

Next Button Text

Next Button Attr

Prev Button Text

Previous Button Attributes

· Window

Scroll Bars

Resizable

Width

Height

· Pagination

Result Row X Of Y

Display

· Result Set

Before Result Set

After Result Set

· Page Attributes

Page Title

Page HTML Head

Page Body Attributes

Page Heading Text

Page Footer Text
Theme Templates

A theme is primarily a template that identifies other templates. Sounds recursive!
To edit the Theme template, just go to Shared Components > Themes; you will see a page similar to the following:

[image: image7.png]
Figure 7 - Theme Template Listing
From here, you can switch, create, copy, delete, import and export themes. Once you click on the theme you wish to edit, the Theme template will be displayed; you simply select which templates are to be used as the defaults for the Theme. If you are wondering how to assign a template to a theme, this is done during creation or by copying the template.
[image: image8.png]
Figure 8 - Choosing a Theme for a new Template

Visual impact: Design and resources

What is good design?

Good design is functional, clear, and inviting. Simple, isn’t it? Not really… looks can be deceiving.
Functionality
I know it sounds tremendously obvious, but web pages should be designed to provide a solid and functional experience for the user. Way back in the dark ages (about 1984), the first models of the Apple Macintosh popularized human interface guidelines to guide the user experience and provide consistency along with functionality.

Even today, however, many developers ignore even the most basic human interface guidelines and ‘re-invent’ their user interfaces. This can cause a great deal of confusion for the user, increase training and support costs, and slow down the development cycle.
Balance

Balance is often confused with symmetry, and though both have a place in good design, balance is the more useful and generous concept. A balanced design uses the visual ‘weight’ of design elements to create a reasonable visual equality between page components; this helps the user grasp sections of content and increases readability.
Flow

Have you ever looked at an interesting photograph and noticed that your eye is drawn from one side of the picture to the other in a natural fashion? This is the concept of flow, and it applies to web pages and graphic layouts as well as photographs. The most common ‘flows’ tend to fall into these groups:

· Left to right

· Top to bottom

· Diagonal

· S-curve

I can’t say that I’ve ever seen an ApEx page that uses an S-curve design, but it should work!
Simplicity

Unless you are experienced with graphic design, try to stick with a single ‘look’ for your application. This will reduce confusion and distraction for your users.

Many sites will start with a more complex front page, then ‘take away’ the more dramatic elements of the front page to create the other pages in the site. This is a common and useful technique.

Another useful technique for an image-based background is to use an graphics editing program to reduce the image contrast on successive pages. This “grayed-out” approach is often associated with professional work, especially if critical details are allowed to remain full-contrast or in full color.

Cohesion

Repetition of unifying elements on the page such as logos, tabs, and breadcrumbs are a good idea – and with ApEx, they’re already built in! In general, cohesive similarity lends a professional look to graphic designs, but that doesn’t mean that you must stay with the supplied themes and templates.
Readability
The most useful and pleasant designs have a readable quality that allows the viewer to readily absorb information. Balance and flow directly affect readability, but there are some other factors as well.
Font selection is critical to a readable document, whether on the web or in print. Serif fonts (such as the Garamond font in this document) have small ‘tails’, known as serifs, on each letter. These serifs lead the reader’s eye from letter to letter and from word to word, and help increase reading speed. This is great for paragraphs of body text. As the font size grows larger, though, the serifs can become unnecessary, especially for headers and larger attention-getting texts. In this case, a sans-serif (no ‘tail’) font makes the document appear ‘cleaner’ and less cluttered.
For most purposes, variable-width fonts (an ‘I’ is less wide than a ‘w’) are desirable because they promote readability. There are some exceptions, though. Mono-spaced fonts such as Courier and Lucida Console are used when lists of numbers are presented; financial documents with columns of numbers, phone number listings, and even computer code can benefit from the use of mono-spaced fonts.
If you are designing for large amounts of text, pay particular attention to the white space areas of your design. If there are no natural breaks in the text, you may want to increase the spacing between lines so that the eye doesn’t become tired – take a look at a novel to see this technique in action. My natural style is to write in outlines, so having the outline points as headers in the text (as in this document) serves to create white space.
One critical aspect of readability is to design charts that make sense! There have been books written on this subject, but the main thing to make sure that all information, whether textual or graphic, is clear and easy to understand.
Color Harmony
Color is an important design element, and the effective use of color can elevate an otherwise uninteresting design and improve its ability to communicate.
How many colors?

For the most part, it is best to limit your color choices to no more than four separate colors, and three is a customary choice. Using multiple shades of the same color has a tendency to strengthen the design and create consistency.
Web Safe

Though this is a bit less of an issue than it used to be, you should consider whether web safe colors are necessary for your theme. Essentially, web safe colors are the 256 hues available on most video cards when minimum color settings are chosen.
Color Blind?

You might also want to check that your design will work for people who are color blind. One of the easiest tests for this is to take a screenshot of your design, then reduce it to black and white using Photoshop or other graphics editor. There are color palettes available for Photoshop that can mimic color blindness; and the Vischeck website (http://www.vischeck.com/vischeck/vischeckURL.php) can help with this testing.
Monochromatic
Designs that primarily rely on shades of the same color can provide an elegant look and are relatively simple to construct. Make sure that there is adequate contrast between the color shades in order to reduce eye strain, but be aware that extreme contrast can also cause user fatigue.

Use a light background with dark text, or a dark background with light text, but be careful of median tones!

The use of gradients in monochromatic designs is currently considered to be professional and pleasing – as long as it’s not overdone.
Contrasting
Color contrasts can be used to create a striking effect as long as the more garish color combinations are avoided. If you’re new at this, be careful and make sure that other people review your design before putting it out for users. If you want to discuss it over lunch (you buy), let me know!

Secret Weapon

If you need inspiration for a workable color scheme, look at some pictures of natural objects: water, earth, and sky are a great place to start. Then use the pictures to guide your color selections; these ‘natural’ color sets will almost always be pleasing. Classic artwork is another valuable resource for inspiration.
Bad design causes confusion

Good design creates a positive impact, but bad design creates confusion or discomfort for the user. Garish colors, distracting graphics, incomprehensible charts, and a plethora of poor choices can easily prevent the user from concentrating on the task at hand or the data to be presented. Although it may be difficult to define good design, almost all of us can easily recognize bad design. So essentially, good design is the opposite of bad design!
Design disasters

Within the pages of your theme, avoid dramatic changes in page color. Some people think that a ‘red page’ (or some similar approach) can be used to call attention to certain operating conditions, but this melodramatic approach is rarely necessary.
Busy or heavily patterned backgrounds are another design disaster. These patterns compete with content for the user’s attention – and the content can easily suffer.

Lest you think that bad design is limited to programs, databases, and web pages, take a look at http://www.baddesigns.com. (I think they could use a web page re-design!)

Experience counts!

Experienced designers can identify a ‘newbie’ designer as easily as a DBA or developer can recognize someone new to the world of the Oracle database and its technologies. In both worlds, inexperienced practitioners typically make the same mistakes:
· Overuse of certain features without understanding them

· Total reliance on default colors, layouts, and behaviors

· Build ‘kitchen-sink’ designs that are too cluttered and complex
· ‘Brute-force’ use of underlying technologies, even when more elegant solutions exist.
Enlisting a more experienced designer (whether layout or database) to review your design is an essential part of the development process. We all have something to learn!
What if I’m not a graphic designer?

Even if you have no background in design or artistic skills, there is a wealth of (primarily free) information that can assist you in developing more visual impact for your projects.
Browse a bit!

Most Oracle technologists have little trouble figuring out something that already works, so take a look at existing web sites to gain a sense of their design sense and pick up some ideas. I do not advocate copying some else’s design; unless they specifically allow it, copying their work is both unethical and illegal. Instead, take advantage of the wealth of resources that are designed to be shared, whether free or commercially available.
You’ve got to see this…
The only website that I know of that sells ApEx templates is http://www.ApExskins.com. Andrew’s designs are rather straightforward – and useful! You should review his work and consider purchasing a design if that is appropriate to your project. I hope that we will soon see more commercial sites dedicated to ApEx design.
You should also review the ApEx-driven websites from the companies that specialize in ApEx projects. I’ll not list them here (for one, I’m terrified thatI’ll leave out someone…), but they are definitely worth a look.
By the way, you did know that Metalink and AskTom are running on ApEx, didn’t you? I thought so!

CSS design sites

Open Source Website Design, at http://oswd.org is a great resource for free web designs. If you don’t find something you like, you’re either a superbly experienced designer, or your imagination needs a bit of expansion. The freeCSStemplates.org site (http://freecsstemplates.org) falls into the same category; I subscribe to both of these sites via RSS to keep up with what new designs are being released. Another interesting site in this group is http://openwebdesign.org.
CSSremix.com is another useful design site, but this site allows users to rate web designs on a 4-point scale. It’s great to see what other people think about a site, and a useful destination for researching design. Instead of being a download site, please remember and respect that these sites are commercial projects.
In addition to the CSS design sites, why not use your favorite search engine to search for graphic design sites? There are so many of these, and they may inspire you to some great work.
Beyond the free CSS template sites, there are quite a few CSS tutorial sites available. I am fond of the tutorial at http://www.w3schools.com/css/default.asp; I often bring it up in a Firefox tab while working on my projects.
If you’re not an artist, you’ll probably also be interested in free icons available on the web. Check out FamFamFam at http://www.famfamfam.com; their icons are among the most popular ones available.

As you might expect, there are also free photos and clip art available on the web. Take caution, though; royalty-free art is not the same as free art. Royalty-free typically means that you will pay a one-time charge or lease the art for a period of time instead of paying per-use charges (aka royalties). Royalty-free can be a great way to obtain high-quality work, but be aware that it is not free.
Online utilities are also available to enrich your designs. Take a look at some of these, then find some more using a search engine:
· Gradient Image Maker: http://tools.dynamicdrive.com/gradient/
· Microbutton Maker: http://tools.dynamicdrive.com/button/
· Strip Generator 2.0: http://www.stripegenerator.com
· Signbot: http://wigflip.com/signbot (Go up one level for more utilities…)

· Logo Maker: http://logomaker.com (commercial site with some free functions)

As you can see, there is certainly no shortage of free resources available! If your development budget permits, there are also commercial templates and icons that can be purchased; you’ll often see advertisements for them as you use the search engines.
One other category of online resource needs to be mentioned: JavaScript libraries. There is at least one ApEx-specific library available (Patrick Wolf’s ApexLib), but other libraries such as ExtJS (http://extJS.com) and code from Dynamic Drive (http://www.dynamicdrive.com) can be integrated. And if you use a search engine… (do I detect a running theme here?)
Creating custom templates and themes
Now that you know a bit about ApEx and improving your visual environment, let’s take a look at a ‘case study’ in creating templates and a theme.
Required Reading!

Before you begin working on themes and templates, there is some reading that you must do! The most definitive resource is the Application Express User’s Guide, Release 3.0, Item B32471-01, or any version that supersedes this. You can browse this on the web, download it as a PDF, or even read it from within ApEx, but you must read it. The “Managing Themes” and “Customizing Templates” sections of Chapter 7 encompass most of what we discuss here.

Unfortunately, Scott Spendolini’s blog posts “Cloning Your Corporate UI With HTMLDB” are no longer available on the web. Hopefully, a white paper or cached copy of the posts will be available soon; it’s worth watching for!
Next, you should visit B to read the section “Create a New Theme”. I’ve included the steps from that source below.
There are many posts by Carl Backstrom, Scott Spendolini , and others on the Application Express forum that address the creation of themes and templates. To get started, view http://forums.oracle.com/forums/message.jspa?messageID=1342362. You should also search the forum for some of the following terms: theme, template, CSS, style, stylesheet, customize, integrate.
Get a few tools together

Once you’ve gained some knowledge about how to proceed, you’ll want to get some “tools of the trade” ready to go. I’m recommending what I use, but feel free to substitute!
Theme Testing Application
Get the Theme Testing Application from http://htmldb.oracle.com/pls/otn/f?p=40722:1. This is a variant of the Demonstration Application that comes with Application Express, but it has one more Tab – the Theme Testing Application. This app includes one of everything, and is a great way to quickly identify how your templates and themes will behave when applied to standard applications. For theme and template development, you’ll probably use this application a lot!
Firebug

As you probably know, Firefox has been the primary development environment for Application Express. One benefit of this choice is the ability to use the Firebug debugger. This software is almost miraculous- it lets you view the HTML source, edit CSS settings on the fly, observe network download times, and so much more. If you do not have this Firefox plug-in, hurry to http://www.getfirebug.com.
Code Editor

On the Windows platform, I happen to like Notepad++ (available from http://notepad-plus.sourceforge.net) because it’s free and has a wonderful feature set. On UNIX or Linux, I prefer vim or vi, just because I learned how to use them years ago and they are readily available. Use whatever you wish, but a robust feature set will save you a great deal of time.
Graphics editor

I currently use Photoshop Elements, but there are a variety of graphics editors available for your platform, whether it is Windows, Linux, or Mac OS X. GIMP is a freeware favorite, and most major publishers have something equivalent. Make sure that the editor can save files in JPG, GIF, and PNG formats, and you should be good to go.
Reference materials

I like to have reference materials readily at hand, whether in print or online. For typical design tasks, I make constant use of these items:

· CSS reference guide and/or tutorials
· HTML reference guide and/or tutorials
· JavaScript reference guide and/or tutorials
· Original art and design references
If you have followed some of the suggestions above for online resources, let me share a Firefox tip: Organize bookmarks for these online resources into a single folder, then right-click to use the “Open All in Tabs” feature. This saves a lot of time.
File Upload (FTP, WebDAV, etc.)

Break out your favorite FTP client and point it to your /i/ (images) directory on your ApEx server. If instead you’re using XE or the Embedded PL/SQL Gateway, make sure to read Dietmar Aust’s blog post on how to access the /i/ directory using WebDAV: http://daust.blogspot.com/2006/03/where-are-images-of-application.html. If you’re not using MSIE, just search for ‘WebDAV’ in your search engine to find an appropriate client for your platform.

Screen real estate

Multiple screens with lots of space will make your design tasks much easier. Yes, you can design on a laptop, but you’ll spend a lot of time just finding the right window. Tabbed browser windows (ala Firefox) make life much easier as well.
Start with the Wiki…

The easiest way to get started with a new theme is to follow the instructions at http://wiki.shellprompt.net/bin/view/ApEx/ThemeTips. By the way, when you create a directory for your new theme, make sure you preserve the capitalization! Use theme_100, not Theme_100. Now you know what kind of mistakes I make…
Original Steps(with comments)
These steps are taken from the wiki (I have added comments in italics):
1. Copy the theme_4 images directory to theme_100

2. Open the CSS file (in the new directory) and do a search and replace changing t4 to t100.

3. Change your theme id to 100 (From Shared Components > Templates, use the Change Identification Number link on the right side of the page.)
4. Do a theme export (this is also a link on the right side of the page)
5. Open your theme export in a text editor and do a search and replace changing these strings

1. id="t4 >> id="t100

2. class="t4 >> class="t100

3. themes/theme_4 >> themes/theme_100

Import your themes export and apply to an application.

You end up with the same theme but it has been set to run out of entirely different directory with new classes.

After step 4, I would like to suggest that you change the theme id back to its original value.
Words of warning

When you import the new theme (for example, stored in the theme_100 directory), you can let ApEx choose a new theme number, or select it yourself. To keep things simple, I suggest using the same number that the directory identifies!

Ok, that worked. Now what?

If you know HTML and CSS, you can continue to build your own design without further assistance. However, many of us need some guidelines, especially when the ‘artistic’ choices must be made. So, we can either build from scratch or modify existing work.
Decisions to make

Create or adapt?
Starting from scratch has its advantages, especially if you are designing ‘on the fly’ or are less sure of your CSS skills. Not having to understand the CSS and/or HTML structures created by another person can actually work to your advantage.

The key criteria for choosing between “create” and “adapt” is whether you understand the existing work to be copied. If you understand the existing design, or are only making a few minor tweaks, adaptation may save you time and effort – especially until you are more comfortable with HTML and CSS.

If you do not understand the previous design, adapting it will probably waste a lot of time because of confusion; in this case, you may be better off starting from scratch. And it’s very easy to become confused; the existing ApEx CSS sheets contain a multitude of entries and are incredibly comprehensive.

Here’s how you can know if you’ve taken the wrong approach. If you are creating from scratch, and you wonder “How did they do that?” you might want to consider adapting the existing design. On the other hand, if you are adapting and you wonder “How did that happen?” you might want to consider starting from scratch.

Open-source or commercial?

Open-source and commercial designs are available for you to use as part of your projects. In general, open-source is typically treated in an ‘as-is’ manner, and commercial designs can be assumed to have some technical support available in support of their cost model.
Another commercial option is to have a designer custom-create a website design for your project. If significant artwork and other features are needed, professional assistance can actually save both time and money. If you can enlist the services of the new crop of companies and consultants that are now doing their work in ApEx, you might even be able to skip reading the remainder of this paper… bad for me, good for them, I guess!
If you are hoping to develop your designs for open-source or commercial use, please remember that this paper is more useful in sharing my current experiences than in creating a guide for the ApEx design professional. I do want to encourage you to share (and profit from) your work – and I hope to learn from it!
HTML or CSS or?

As you design or adapt a design, you need to be conscious and cautious of some basic design assumptions that are evident in ApEx. A significant design choice is that the development team has created most templates using nested <table> layouts. Based on Application Express forum messages at forums.oracle.com, this choice was made in order to provide maximum functionality for both Microsoft Internet Explorer and Firefox. IE7 does not always implement ‘standards’ consistently, and Firefox has its own occasional issues as well.
Because of this, a ‘pure’ CSS design may take a bit of modification in order to make things work properly. But don’t blame the ApEx development team!
Another caution
Notice that if you copy from existing templates, the corresponding CSS files will be referenced. This may or may not be what you want, so just be careful.

Adapting an open-source design

For the purposes of this example, I’m using the “Coffee N Cream” style by Arcsin. This style is available at http://www.oswd.org/design/preview/id/3514. If you go to the designer’s home site (http://arcsin.se), you’ll notice that it comes up in Swedish. If you cannot read Swedish, there is a small flag icon on the page to allow the site to be viewed in English.
Without modification (other than removing excess text to fit it on the page), the style looks like:

[image: image9.png]
Figure 9 - Adaptated Original Design by Arcsin
Modify the page and CSS to work within the ApEx directory structure.

Many open-source templates use names such as “default.css”, so these will probably need to be changed. Fix any path identifiers in the HTML and CSS files during this time. I prefer to keep the supplied images in their own directory. This way, multiple sets of images can available during the build phase. This is especially useful if combining designs.

Strip out any demo text from the page. Leave in any ‘special feature’ structures for now. This will help make the overall design of the page more obvious, and easier to manipulate. Once this is complete, test out the modifications in the browser (no ApEx yet). We just want to make sure that no unnecessary damage has been done.
Decide what features of the design will go into your ApEx page template.

This is a critical part of the process; we need to ‘translate’ from the original design into an ApEx-compatible structure. In effect, you’re adjusting for the ‘hidden’ structure of an ApEx page that results from using the ApEx definition of a template.

This is not always as difficult as it may seem at first. Many basic designs can be easily mimicked by use of the proper ApEx template. For example, the “Coffee N Cream” design can be reproduced using Theme 4 and modified CSS.

Identify items that need modification or addition to the templates
For my purposes, I wanted to make a few changes from the original design:

· Reduce the height of the Logo/Title area
· Expand the width of the content area
· Move the Sidebar to the left
· Add a breadcrumb area

· Add a Navigation area (Print/Logout links)

· Allow list templates to be used as Sidebar content
Find an existing theme that is as compatible as possible with your new design.

Export/Import that theme to serve as your new baseline. This can save a lot of work! Use the approach from the wiki as described above.
Create a new page template in ApEx

Creating a new page template is not difficult. Go to Shared Components>Templates>Create Template; you will see a screen similar to this:
[image: image10.png]
Figure 10 - Template Creation Wizard
Choose “Page”.
In the “Create Page Template” wizard that follows, choose “As a Copy of an Existing Template” radio button and press “Next”. Choose the application to copy the template FROM and press “Next”.

Choose the Theme to copy FROM and the Theme to copy TO. These can be the same if you wish to copy a default template.
[image: image11.png]
Figure 11 - Create Page Template
In this example, we’ll copy the “One Level Tabs with Sidebar” template to create our own. The new template will be named “Front Page OLT/S”. Press the “Copy Page Templates” button to make the copy.

[image: image12.png]
Figure 12 - Copy Template
Name the page template. We’ll use the “One Level Tabs with Sidebar” template (for my work, probably the most useful template class available), and name it “Front Page OLT/S”.
Note: You might want to add abbreviations for the template class if you are using ‘nice’ names. For example, I use OLT/S to mean “One Level Tab with Sidebar”; these abbreviations are:

	Shortcut
	Template Class

	LOG
	Login

	NT
	No Tabs

	NT/S
	No Tabs with Sidebar

	OLT
	One Level Tabs

	OLT/S
	One Level Tabs with Sidebar

	POP
	Popup

	PF
	Printer Friendly

	TLT
	Two Level Tabs

	TLT/S
	Two Level Tabs with Sidebar

	CST1
	Custom 1

	CST2
	Custom 2, etc.

Once we finish that, we can see that the new template has been added:

[image: image13.png]
Figure 13 - Template Listing
Make the template edits

Click on the title of the template to edit it, then paste in the HTML from the edited page into the appropriate sections of the edit page.
Tip: Don’t change themes yet!

Instead of going to the trouble to change the entire theme at this point, we’ll simply create a testing page and set its page template to our newly created template.

[image: image14.png]
Figure 14 - Changing the Page Template
[image: image15.png]
Figure 15 - First Cut of the new theme!
For the first cut, we can see that the new CSS has already started to make an impact. A lot of work remains, though!

[image: image16.png]
Figure 16 - A little more work...
A few more tweaks, and the basic page layout starts to fall into line.

Decide which items need to be ‘translated’ into ApEx

At this point, we need to take a serious look at how to translate the new design into ApEx.
The most challenging aspect of adapting an existing design to an ApEx template is not the CSS or HTML coding; it is understanding the richness of the ApEx functionality and applying it appropriately to your intended result. From my vantage point, this is what Carl Backstrom and others refer to as the “art” of design.
For example, let’s refer to the Coffee N Cream design referenced above. This CSS design uses <H1> header tags as the top-level attributes of its sidebar list within the siednav class. The original code looks like this:
<div class="sidenav">

<h1>Something</h1>

pellentesque

sociis natoque

semper

convallis

<h1>Another thing</h1>

consequat molestie

sem justo

semper

sociis natoque

<h1>Third and last</h1>

sociis natoque

magna sed purus

tincidunt

consequat molestie

</div>
However, ApEx does things a bit differently. First, each “object” (in this case, a list) is assigned to a region on the page. That’s simple enough; we can create a t100sidenav class. The next step would be for us to create a list template, but this means that we need to change the code base so that the <H1> tags are replaced by tags within a higher-level nested list. In HTML, this list would then look more like this:

Something

pellentesque

sociis natoque

semper

convallis

Another thing

consequat molestie

sem justo

semper

sociis natoque

Third and last

sociis natoque

magna sed purus

tincidunt

consequat molestie

So which approach is “right”? The answer is quite definite – it depends. It depends on what you need for your application, it depends on how well you understand ApEx, HTML, and CSS, it depends on how much time you have and many other factors. You must make the choices yourself.
If that weren’t enough, ApEx enables additional functionality to a region that would typically require coding in other environments. More than just ‘holding’ other items, a region in ApEx will contain a title, placements for buttons, and more.
As an example of this, let’s take a look at the Sidebar region from Theme 4 (Minimal):
<table class="t4SidebarRegion" id="#REGION_ID#" border="0" cellpadding="0" cellspacing="0" summary="">

<tr><td class="t4RegionHeader">#TITLE#</td></tr>

<tr>

<td class="t4ButtonHolder">#CLOSE##PREVIOUS##NEXT##DELETE##EDIT##CHANGE##CREATE##HELP#

</td>

</tr>

<tr>

<td class="t4RegionBody">#BODY#</td>

</tr>

</table>
The #BODY# section contains the other objects that you define to go into the region; notice that button positions are also created for #PREVIOUS#, #NEXT#, #DELETE#, #EDIT#, #CHANGE#, #CREATE#, and #HELP#.
Before you test the template…

Remember to move your files to the template_### directory (template_100)! If you don’t, everything is guaranteed to look awful! Just for tracking purposes, it’s a good idea to keep any licensing files with the transferred set, and to include a readme.txt file to identify your own changes.
And don’t forget that all paths in the template must start with “#IMAGE_PREFIX#themes/theme_100” (or the appropriate number).

From the templates page, click on the traffic light to view the resulting page template
[image: image17.png]
Figure 17 - Page Template View
Not too bad for a first cut, but we still have lots of work to do!
Testing and tweaking the Template

Now comes the hardest part – testing and tweaking your edits. I’d love to be able to give you a line-by-line guide for making the changes, but every page and every template is different. Besides, it would just spoil your fun, wouldn’t it?
Creating a Theme

Once you have created the necessary pages and other templates for your design, you will want to collect your work into a Theme. The primary difference between a Theme and a simple collection of templates is that a Theme establishes defaults for which templates are being used as applications are built.
[image: image18.png]
Figure 18 - Theme definition page
Final Steps

Once you have created the Theme, there are still a few tasks to accomplish:

· Export the Theme

· Apply the Theme to an Application

· Test again, and again…

Hopefully, you’ve confirmed your understanding of how Application Express uses templates to build pages, improved your design resources, and gained a basic understanding of how to implement a design using Application Express. I wish you the best in your development efforts, and I hope to see your designs online in the very near future.
Contact Information
If you have any questions or corrections regarding this paper and presentation, please contact:

David Scott

Intec Billing, Inc.
mailto:david.scott@intecbilling.com

Phone: 404-705-2966
To edit a template, click on its name. Click on the Edit icon to view all templates.

29
Paper 441

