Developing for the Oracle Internet Platform

Tony’s Top 10 Oracle Tips and Tricks for Developers
Tony Catalano, TUSC

Overview

Throughout the years, I have accumulated a list of tips and techniques that assist with the development of Oracle based custom applications. These tips and tricks can be used to improve application performance, to streamline code, and to create higher quality applications. Attendees will gain an understanding of the feature, learn when to use it, and the design considerations associated with each.

Internal PL/SQL Enhancements

Performance Improvements

PL/SQL has indeed just gotten faster, and dramatically so, because Oracle Database 10g introduces

an entirely new optimizing PL/SQL code generator,

a redesigned and tightly tuned PL/SQL Virtual Machine,

usability and performance improvements to native compilation,

performance oriented PL/SQL features – notably IEEE numeric types and revised PL/SQL integer computations.

PL/SQL computational programs should run at least three times as fast as they did in Oracle8 Database version 8.0.6, and at least twice as fast as they did in Oracle9i Database Release 2 version 9.2.0. (Oracle9iR2 is already about one and a half times as fast as Oracle8.0 because of the evolutionary PVM improvements that were leaked in to successive releases before the revolutionary introduction of the new code-generator in Oracle10g.) Focusing on the Oracle9iR2 to Oracle10g improvement, even when mixed with heavy doses of SQL, overall application speedups of at least 15% were observed. And programs which happen to be especially suitable for improvement speed up by factors of four to seven! All in all, PL/SQL just got faster – it’s twice as fast in Oracle10g as in Oracle9iR2.
PL/SQL performance is improved across the board. Most improvements are automatic, with no action required from you.

Global optimization of PL/SQL code is controlled by the PLSQL_OPTIMIZE_LEVEL initialization parameter. The default optimization level improves performance for a broad range of PL/SQL operations. Most users should never need to change the default optimization level.

Performance improvements include better integer performance, reuse of expression values, simplification of branching code, better performance for some library calls, and elimination of dead code.

Integration of SQL and PL/SQL Parsers

Prior to 9i Oracle utilized a separate SQL Parser for the SQL Engine and PL/SQL Engine. In Oracle 9i, the SQL Parser is the same for the SQL Engine and the PL/SQL Engine.

Overview of PL/SQL Compile-Time Warnings

To make your programs more robust and avoid problems at run time, you can turn on checking for certain warning conditions. These conditions are not serious enough to produce an error and keep you from compiling a subprogram. They might point out something in the subprogram that produces an undefined result or might create a performance problem.

To work with PL/SQL warning messages, you use the PLSQL_WARNINGS initialization parameter, the DBMS_WARNING package, and the USER/DBA/ALL_PLSQL_OBJECT_SETTINGS views.

PL/SQL Warning Categories

PL/SQL warning messages are divided into categories, so that you can suppress or display groups of similar warnings during compilation. The categories are:

Severe: Messages for conditions that might cause unexpected behavior or wrong results, such as aliasing problems with parameters.

Performance: Messages for conditions that might cause performance problems, such as passing a VARCHAR2 value to a NUMBER column in an INSERT statement.

Informational: Messages for conditions that do not have an effect on performance or correctness, but that you might want to change to make the code more maintainable, such as dead code that can never be executed.

The keyword All is a shorthand way to refer to all warning messages.

You can also treat particular messages as errors instead of warnings. For example, if you know that the warning message PLW-05003 represents a serious problem in your code, including 'ERROR:05003' in the PLSQL_WARNINGS setting makes that condition trigger an error message (PLS_05003) instead of a warning message. An error message causes the compilation to fail.

Controlling PL/SQL Warning Messages

To let the database issue warning messages during PL/SQL compilation, you set the initialization parameter PLSQL_WARNINGS. You can enable and disable entire categories of warnings (ALL, SEVERE, INFORMATIONAL, PERFORMANCE), enable and disable specific message numbers, and make the database treat certain warnings as compilation errors so that those conditions must be corrected.

This parameter can be set at the system level or the session level. You can also set it for a single compilation by including it as part of the ALTER PROCEDURE statement. You might turn on all warnings during development, turn off all warnings when deploying for production, or turn on some warnings when working on a particular subprogram where you are concerned with some aspect, such as unnecessary code or performance.

ALTER SYSTEM SET PLSQL_WARNINGS='ENABLE:ALL'; -- For debugging during development.

ALTER SESSION SET PLSQL_WARNINGS='ENABLE:PERFORMANCE'; -- To focus on one aspect.

ALTER PROCEDURE hello COMPILE PLSQL_WARNINGS='ENABLE:PERFORMANCE'; -- Recompile with extra checking.

ALTER SESSION SET PLSQL_WARNINGS='DISABLE:ALL'; -- To turn off all warnings.

-- We want to hear about 'severe' warnings, don't want to hear about 'performance'

-- warnings, and want PLW-06002 warnings to produce errors that halt compilation.

ALTER SESSION SET PLSQL_WARNINGS='ENABLE:SEVERE','DISABLE:PERFORMANCE','ERROR:06002';

Warning messages can be issued during compilation of PL/SQL subprograms; anonymous blocks do not produce any warnings.

The settings for the PLSQL_WARNINGS parameter are stored along with each compiled subprogram. If you recompile the subprogram with a CREATE OR REPLACE statement, the current settings for that session are used. If you recompile the subprogram with an ALTER ... COMPILE statement, the current session setting might be used, or the original setting that was stored with the subprogram, depending on whether you include the REUSE SETTINGS clause in the statement.

To see any warnings generated during compilation, you use the SQL*Plus SHOW ERRORS command or query the USER_ERRORS data dictionary view. PL/SQL warning messages all use the prefix PLW.

Using the DBMS_WARNING Package

If you are writing a development environment that compiles PL/SQL subprograms, you can control PL/SQL warning messages by calling subprograms in the DBMS_WARNING package. You might also use this package when compiling a complex application, made up of several nested SQL*Plus scripts, where different warning settings apply to different subprograms. You can save the current state of the PLSQL_WARNINGS parameter with one call to the package, change the parameter to compile a particular set of subprograms, then restore the original parameter value.

For example, here is a procedure with unnecessary code that could be removed. It could represent a mistake, or it could be intentionally hidden by a debug flag, so you might or might not want a warning message for it.

CREATE OR REPLACE PROCEDURE dead_code

AS

 x number := 10;

BEGIN

 if x = 10 then

 x := 20;

 else

 x := 100; -- dead code (never reached)

 end if;

END dead_code;/

-- By default, the preceding procedure compiles with no errors or warnings.

-- Now enable all warning messages, just for this session.

CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('ENABLE:ALL' ,'SESSION');

-- Check the current warning setting.

select dbms_warning.get_warning_setting_string() from dual;

-- When we recompile the procedure, we will see a warning about the dead code.

ALTER PROCEDURE dead_code COMPILE;
DML Error Logging

When you define data rules on a data object for which DML error logging is enabled, the error table generated by Warehouse Builder contains the columns from the data object, the data rules columns, and the DML error columns. The data type and precision of the columns from the data object are the same as the ones in the base data object. This could result in the failed inserts into the error table when errors occur during DML operations. For example, some errors, such as value too small, may cause error table insert failure.
Creating the Error Log Table

· Create Error Table Manually

· Have Error Table Created Upon Execution of DML

· Create Error Table with DBMS_ERRLOG

DBMS_ERRLOG

10gR2> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('S_EMPLOYEE_PRODUCTION',

 'S_EMPLOYEE_PRODUCTION_LOG');

10gR2> DESCR S_EMPLOYEE_PRODUCTION_LOG

 Name Type

 ------------------------- ----------------

 ORA_ERR_NUMBER$ NUMBER -- Oracle error number

 ORA_ERR_MESG$ VARCHAR2(2000) -- Oracle error message text

 ORA_ERR_ROWID$ ROWID -- Rowid of the row in error (update and delete)

 ORA_ERR_OPTYP$ VARCHAR2(2) -- Type of operation (I, U, D). Merge (I, U)

 ORA_ERR_TAG$ VARCHAR2(2000) -- Value of the tag supplied by the user

 EMPLOYEE_ID VARCHAR2(4000)

 EMPLOYEE_LAST_NAME VARCHAR2(4000)

 EMPLOYEE_FIRST_NAME VARCHAR2(4000)

 USERID VARCHAR2(4000)

 START_DATE VARCHAR2(4000)

Reject Limit

· Indicates the maximum number of errors that can be encountered before the DML statement terminates and rolls back

· You can also specify UNLIMITED

· The default reject limit is 0, which means that upon encountering the first error, the error is logged and the statement rolls back

· If the statement exceeds the reject limit and rolls back, the error logging table retains the log entries recorded so far

Error Logging Restrictions and Caveats

· Oracle Database logs the following errors during DML operations:

· Column values that are too large

· Constraint violations (NOT NULL, unique, referential, and check constraints)

· Errors raised during trigger execution

· Security

· The user who issues the INSERT statement with DML error logging must have INSERT privileges on the error logging table

Merge Statement

This specialized statement combines insert and update into a single operation. It is intended for data warehousing applications that perform particular patterns of inserts and updates.

Example

Prior to 9i

UPDATE (SELECT

 S.TIME_ID ,S.STORE_ID ,S.REGION_ID, S.PARTS s_parts,

 S.SALES_AMT s_sales_amt ,S.TAX_AMT s_tax_amt ,

 S.DISCOUNT s_discount, D.PARTS d_parts ,

 D.SALES_AMT d_sales_amt ,D.TAX_AMT d_tax_amt ,

 D.DISCOUNT d_discount

 FROM SALES_MAY05 S, SALES_FACT D

 WHERE D.TIME_ID = S.TIME_ID

 AND D.STORE_ID = S.STORE_ID

 AND D.REGION_ID = S.REGION_ID) JV

 SET d_parts = d_parts + s_parts,

 d_sales_amt = d_sales_amt + s_sales_amt,

 d_tax_amt = d_tax_amt + s_tax_amt,

 d_discount = d_discount + s_discount;

INSERT INTO SALES_FACT (

 TIME_ID,STORE_ID ,REGION_ID,

 PARTS ,SALES_AMT ,TAX_AMT ,DISCOUNT)

 SELECT

 S.TIME_ID ,S.STORE_ID ,S.REGION_ID,

 S.PARTS ,S.SALES_AMT ,S.TAX_AMT ,S.DISCOUNT

 FROM SALES_JUL01 S

 WHERE (S.TIME_ID, S.STORE_ID, S.REGION_ID) NOT IN (

 SELECT D.TIME_ID, D.STORE_ID, D.REGION_ID

 FROM SALES_FACT D);

In 10g
MERGE INTO SALES_FACT D

 USING SALES_MAY05 S

 ON (D.TIME_ID = S.TIME_ID

 AND D.STORE_ID = S.STORE_ID

 AND D.REGION_ID = S.REGION_ID)

 WHEN MATCHED THEN

 UPDATE

 SET d_parts = d_parts + s_parts,

 d_sales_amt = d_sales_amt + s_sales_amt,

 d_tax_amt = d_tax_amt + s_tax_amt,

 d_discount = d_discount + s_discount

 WHEN NOT MATCHED THEN

 INSERT (D.TIME_ID ,D.STORE_ID ,D.REGION_ID,

 D.PARTS ,D.SALES_AMT ,D.TAX_AMT ,D.DISCOUNT)

 VALUES (

 S.TIME_ID ,S.STORE_ID ,S.REGION_ID,

 S.PARTS ,S.SALES_AMT ,S.TAX_AMT ,S.DISCOUNT);
Sequences in PL/SQL Expressions
In previous releases, you could only retrieve the value of a sequence (CURRVAL or NEXTVAL) by invoking a cursor (explicit or implicit) for PL/SQL based code. This method introduced runtime and scalability issues within a developers code.
Old Way

DECLARE

 V_NEW_VAL NUMBER;

BEGIN

 SELECT MY_SEQ.NEXTVAL INTO V_NEW_VAL FROM DUAL;

END;

New Way

DECLARE

 V_NEW_VAL NUMBER;

BEGIN

 V_NEW_VAL := MY_SEQ.NEXTVAL;

END;
Benfits
· No Cursor is needed so the code is more efficient

· This can be seen if we were loading a warehouse dimension with a thousand new records and each new record insertion populated a surrogate key with a sequence

· With the previous method we would have instantiated a thousand cursors, while the new method opens none

Flashback Table
Oracle Flashback Table lets you revert one or more tables back to their contents at a previous time without affecting other objects in your database. This recovery technique lets you recover from logical data corruptions, such as erroneously inserting rows into a table or deleting data from a table. Flashback Table lets you return tables you select to their state at a past point in time without undoing desired changes to the other objects in your database, as would be required by a point-in-time recovery of the entire database. Also, unlike point-in-time recovery, your database remains available during the operation.
Example

SELECT ORIGINAL_NAME, OPERATION, TYPE, DROPTIME, CAN_UNDROP

FROM USER_RECYCLEBIN;

no rows selected

CREATE TABLE EMP_TEMP AS SELECT * FROM EMP;

Table created.

DROP TABLE EMP_TEMP;

Table dropped.

SELECT ORIGINAL_NAME, OPERATION, TYPE, DROPTIME, CAN_UNDROP

FROM USER_RECYCLEBIN;

ORIGINAL_NAME OPERATION TYPE DROPTIME CAN

------------- --------- -------------------- ------------------- ---

EMP_TEMP DROP TABLE 2004-02-19:14:51:05 YES
CREATE TABLE EMP_TEMP AS SELECT * FROM EMP;

Table created.

DROP TABLE EMP_TEMP;

Table dropped.

SELECT OBJECT_NAME, ORIGINAL_NAME, OPERATION, TYPE, DROPTIME,

 CAN_UNDROP

FROM USER_RECYCLEBIN;

OBJECT_NAME ORIGINAL_NAME OPERATION TYPE DROPTIME CAN

----------------- ------------- --------- ----- ------------------- ---

RB$$48439$TABLE$0 EMP_TEMP DROP TABLE 2004-02-19:14:55:02 YES

PURGE TABLE RB$$48439$TABLE$0; -- Table Purged from Recycle Bin

PURGE TABLE EMP_TEMP; -- Table Purged from Recycle Bin

PURGE RECYCLEBIN; -- Entire Contents of Recycle Bin Purged

CREATE TABLE EMP_TEMP AS SELECT * FROM EMP;

Table created.

DROP TABLE EMP_TEMP;

Table dropped.

FLASHBACK TABLE EMP_TEMP TO BEFORE DROP RENAME TO EMP_TEMP1;

Flashback complete.

DESCR EMP_TEMP

ERROR:

ORA-04043: object EMP_TEMP does not exist

DBMS_METADATA

Oracle9i includes a PL/SQL package, DBMS_METADATA, which provides interfaces for extracting complete definitions of database objects. The definitions can be expressed either as XML or as SQL DDL.

Example

set pagesize 0

set linesize 200

set long 1000000

set longchunksize 1000000

spool \bld_map_schema.sql

-- get_ddl for DDL and get_xml for XML

select dbms_metadata.get_ddl('TABLE',a.table_name,'CLAIM_BUILD6')

 from dba_tables a

 where table_name = 'COD_MAP_MINOR_COVS'

 and owner = 'CLAIM_BUILD6'

spool off

Multi-Table Inserts
Multi-table inserts provide a new SQL statement for transformations, where data can either end up in several or exactly one target, depending on the business transformation rules. This insertion can be done conditionally based on business rules or unconditionally.
Conditional Inserts

insert first

 when total > 10000 then

 into priority_handling values(id)

 when total > 5000 then

 into special_handling values(id)

 when total > 3000 then

 into privilege_handling values(id)

 else

 into regular_handling values(id)

 select id, -- All fields used must be in the Select Statement

 total

 from s_ord;

Unconditional Inserts

insert all

 into product_sales values(product_id, today, total)

 into product_history values(product_id, today, quantity)

select i.product_id as product_id,

 trunc(sysdate) as today,

 sum(i.price * i.quantity) as total,

 sum(i.quantity) as quantity

 from s_ord o,

 s_item i

 where o.id = i.ord_id

 and trunc(o.date_ordered) = trunc(sysdate)

 group by i.product_id;

Native Dynamic SQL (EXECUTE IMMEDIATE)

This section shows you how to use native dynamic SQL (dynamic SQL for short), a PL/SQL interface that makes your applications more flexible and versatile. You learn simple ways to write programs that can build and process SQL statements "on the fly" at run time.

Within PL/SQL, you can execute any kind of SQL statement (even data definition and data control statements) without resorting to cumbersome programmatic approaches. Dynamic SQL blends seamlessly into your programs, making them more efficient, readable, and concise.

What is Dynamic SQL?

Some programs must build and process a variety of SQL statements at run time. For example, a general-purpose report writer must build different SELECT statements for the various reports it generates. In this case, the full text of the statement is unknown until run time. Such statements can, and probably will, change from execution to execution. So, they are called dynamic SQL statements.

Dynamic SQL statements are stored in character strings built by your program at run time. Such strings must contain the text of a valid SQL statement or PL/SQL block. They can also contain placeholders for bind arguments. A placeholder is an undeclared identifier, so its name, to which you must prefix a colon, does not matter.

Why use Dynamic SQL?

You want to execute a SQL data definition statement (such as CREATE), a data control statement (such as GRANT), or a session control statement (such as ALTER SESSION). In PL/SQL, such statements cannot be executed statically.

You want more flexibility. For example, you might want to defer your choice of schema objects until run time. Or, you might want your program to build different search conditions for the WHERE clause of a SELECT statement. A more complex program might choose from various SQL operations, clauses, etc.

You use package DBMS_SQL to execute SQL statements dynamically, but you want better performance, something easier to use, or functionality that DBMS_SQL lacks such as support for objects and collections.

The EXECUTE IMMEDIATE Statement

The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes a dynamic SQL statement or an anonymous PL/SQL block. The syntax is

EXECUTE IMMEDIATE dynamic_string

[INTO {define_variable[, define_variable]... | record}]

[USING [IN | OUT | IN OUT] bind_argument

 [, [IN | OUT | IN OUT] bind_argument]...];

where dynamic_string is a string expression that represents a SQL statement or PL/SQL block, define_variable is a variable that stores a SELECTed column value, record is a user-defined or %ROWTYPE record that stores a SELECTed row, and bind_argument is an expression whose value is passed to the dynamic SQL statement or PL/SQL block.

You must put every bind argument in the USING clause. If you do not specify a parameter mode, it defaults to IN. At run time, any bind arguments in the USING clause replace corresponding placeholders in the SQL statement or PL/SQL block. So, every placeholder must be associated with a bind argument in the USING clause. Numeric, character, and string literals are allowed in the USING clause, but Boolean literals (TRUE, FALSE, NULL) are not.

Examples

DECLARE

 sql_stmt VARCHAR2(100);

 plsql_block VARCHAR2(200);

 my_deptno NUMBER(2) := 50;

 my_dname VARCHAR2(15) := 'PERSONNEL';

 my_loc VARCHAR2(15) := 'DALLAS';

 emp_rec emp%ROWTYPE;

BEGIN

 sql_stmt := 'INSERT INTO dept VALUES (:1, :2, :3)';

 EXECUTE IMMEDIATE sql_stmt USING my_deptno, my_dname, my_loc;

 sql_stmt := 'SELECT * FROM emp WHERE empno = :id';

 EXECUTE IMMEDIATE sql_stmt INTO emp_rec USING 7788;

 EXECUTE IMMEDIATE 'DELETE FROM dept WHERE deptno = :n' USING my_deptno;

 plsql_block := 'BEGIN emp_stuff.raise_salary(:id, :amt); END;';

 EXECUTE IMMEDIATE plsql_block USING 7788, 500;

 EXECUTE IMMEDIATE 'CREATE TABLE bonus (id NUMBER, amt NUMBER)';

 sql_stmt := 'ALTER SESSION SET SQL_TRACE TRUE';

 EXECUTE IMMEDIATE sql_stmt;

END;

Advantages of Native Dynamic SQL

Ease of Use

Native dynamic SQL is much simpler to use than the DBMS_SQL package. Because native dynamic SQL is integrated with SQL, you can use it in the same way that you currently use static SQL within PL/SQL code. In addition, native dynamic SQL code is typically more compact and readable than equivalent code that uses the DBMS_SQL package.

The DBMS_SQL package is not as easy to use as native dynamic SQL. There are many procedures and functions that must be used in a strict sequence. Typically, performing simple operations requires a large amount of code when you use the DBMS_SQL package. You can avoid this complexity by using native dynamic SQL instead.

CREATE PROCEDURE insert_into_table (

 table_name VARCHAR2,

 deptnumber NUMBER,

 deptname VARCHAR2,

 location VARCHAR2) IS

 cur_hdl INTEGER;

 stmt_str VARCHAR2(200);

 rows_processed BINARY_INTEGER;

BEGIN

 stmt_str := 'INSERT INTO ' || table_name || ' VALUES (:deptno, :dname, :loc)';

 -- open cursor

 cur_hdl := dbms_sql.open_cursor;

 -- parse cursor

 dbms_sql.parse(cur_hdl, stmt_str, dbms_sql.native);

 -- supply binds

 dbms_sql.bind_variable (cur_hdl, ':deptno', deptnumber);

 dbms_sql.bind_variable (cur_hdl, ':dname', deptname);

 dbms_sql.bind_variable (cur_hdl, ':loc', location);

 -- execute cursor

 rows_processed := dbms_sql.execute(cur_hdl);

 -- close cursor

 dbms_sql.close_cursor(cur_hdl);

END;

CREATE PROCEDURE insert_into_table (

 table_name VARCHAR2,

 deptnumber NUMBER,

 deptname VARCHAR2,

 location VARCHAR2) IS

 stmt_str VARCHAR2(200);

BEGIN

 stmt_str := 'INSERT INTO ' || table_name || ' values (:deptno, :dname, :loc)';

 EXECUTE IMMEDIATE stmt_str USING deptnumber, deptname, location;

END;

Performance Improvements

The performance of native dynamic SQL in PL/SQL is comparable to the performance of static SQL because the PL/SQL interpreter has built-in support for native dynamic SQL. Therefore, the performance of programs that use native dynamic SQL is much better than that of programs that use the DBMS_SQL package. Typically, native dynamic SQL statements perform 1.5 to 3 times better than equivalent statements that use the DBMS_SQL package. Of course, your performance gains may vary depending on your application.

The DBMS_SQL package is based on a procedural API and, as a result, incurs high procedure call and data copy overhead. For example, every time you bind a variable, the DBMS_SQL package copies the PL/SQL bind variable into its space for later use during execution. Similarly, every time you execute a fetch, first the data is copied into the space managed by the DBMS_SQL package and then the fetched data is copied, one column at a time, into the appropriate PL/SQL variables, resulting in substantial overhead resulting from data copying. In contrast, native dynamic SQL bundles the statement preparation, binding, and execution steps into a single operation, which minimizes the data copying and procedure call overhead and improves performance.

Support for User-Defined Types

Native dynamic SQL supports all of the types supported by static SQL in PL/SQL. Therefore, native dynamic SQL provides support for user-defined types, such as user-defined objects, collections, and REFs. The DBMS_SQL package does not support these user-defined types.

Support for Fetching Into Records

Native dynamic SQL and static SQL both support fetching into records, but the DBMS_SQL package does not. With native dynamic SQL, the rows resulting from a query can be directly fetched into PL/SQL records.

Advantages of DBMS_SQL

Support for Client-Side Programs

Currently, the DBMS_SQL package is supported in client-side programs, but native dynamic SQL is not. Every call to the DBMS_SQL package from the client-side program translates to a PL/SQL remote procedure call (RPC); these calls occur when you need to bind a variable, define a variable, or execute a statement.

Support for DESCRIBE

The DESCRIBE_COLUMNS procedure in the DBMS_SQL package can be used to describe the columns for a cursor opened and parsed through DBMS_SQL. The functionality is similar to the DESCRIBE command in SQL*Plus. Native dynamic SQL does not have a DESCRIBE facility.

Support for Bulk Dynamic SQL

Bulk SQL is the ability to process multiple rows of data in a single DML statement. Bulk SQL improves performance by reducing the amount of context switching between SQL and the host language. Currently, the DBMS_SQL package supports bulk dynamic SQL.

Multiple Row Updates and Deletes with a RETURNING Clause

The DBMS_SQL package supports statements with a RETURNING clause that update or delete multiple rows. Native dynamic SQL only supports a RETURNING clause if a single row is returned.

Support for SQL Statements Larger than 32KB

The DBMS_SQL package supports SQL statements larger than 32KB; native dynamic SQL does not.

Global Temporary Tables

In addition to permanent tables, Oracle Database can create temporary tables to hold session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table that can be transaction-specific or session-specific. For transaction-specific temporary tables, data exists for the duration of the transaction. For session-specific temporary tables, data exists for the duration of the session. Data in a temporary table is private to the session. Each session can only see and modify its own data. DML locks are not acquired on the data of the temporary tables. The LOCK statement has no effect on a temporary table, because each session has its own private data.
DML statements on temporary tables do not generate redo logs for the data changes. However, undo logs for the data and redo logs for the undo logs are generated. Data from the temporary table is automatically dropped in the case of session termination, either when the user logs off or when the session terminates abnormally such as during a session or instance failure.

You can create indexes for temporary tables using the CREATE INDEX statement. Indexes created on temporary tables are also temporary, and the data in the index has the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also create triggers on temporary tables.
Bulk Binds and Collections

Bulk Binds were introduced in Oracle8i and enhanced in 9i and 10g, Bulk Binds can significantly improve performance of “bulk” SQL statements. They are commonly used in conjunction with collections. Instead of “binding” each piece of a collection, an entire collection is passed back and forth to the SQL engine. Using this feature minimizes number of context switches between PL/SQL and SQL engines hence improving performance.
The FORALL keyword can improve the performance of INSERT, UPDATE, or DELETE statements that reference collection elements.
Basic Example

CREATE OR REPLACE PROCEDURE new_warehouse (p_warehouse_id NUMBER) IS

 TYPE ProdTab IS TABLE OF NUMBER;

 prods ProdTab := ProdTab();

 CURSOR get_products IS

 SELECT product_id

 FROM s_product;

 lv_cntr PLS_INTEGER := 0;

BEGIN

 FOR prec IN get_products

 LOOP

 prods.EXTEND;

 lv_cntr := lv_cntr + 1;

 prods(lv_cntr) := prec.product_id;

 END LOOP;

 FORALL x IN prods.FIRST..prods.LAST

 INSERT INTO s_inventory (product_id, warehouse_id, amount_in_stock)

 VALUES (prods(x), p_warehouse_id, 0);

END new_warehouse;
Bulk Collect

The BULK COLLECT INTO clause can improve the performance of queries that reference collections.
SQL engine incrementally bulk binds column values. With each iteration of the FORALL, column values returned by the BULK COLLECT are added to the output collection (current values in the collection are not overwritten).

Example

DECLARE

 TYPE DeptIDTab IS TABLE OF s_department.department_id%TYPE;

 TYPE EmpIDTab IS TABLE OF s_employee.employee_id%TYPE;

 deptIDs DeptIDTab;

 empIDs EmpIDTab;

BEGIN

 SELECT department_id

 BULK COLLECT INTO deptIDs

 FROM s_department;

 -- For each department, remove terminated employees

 FORALL x IN deptIDs.FIRST..deptIDs.LAST

 DELETE s_employee

 WHERE department_id = deptIDs(x)

 AND INSTR(comments, 'TERMINATED') > 0

 RETURNING employee_id BULK COLLECT INTO empIDs;

END;

References

PL/SQL User’s Guide and Reference, 10g Release 1 (10.1)

New Application Development Features in Oracle Database 10g Release 1

What’s New in PL/SQL in Oracle Database 10g?, Oracle Technology Network

Oracle9i Application Developer's Guide - Fundamentals, Oracle Corporation

Getting to Know Oracle9i, Oracle Corporation

Oracle9i Concepts, Oracle Corporation

Oracle9i SQL Reference, Oracle Corporation

Oracle9i Reference, Oracle Corporation

About the Author

Tony Catalano is a Senior Vice President with TUSC. He has been developing Oracle applications for over 13 years. Tony is a frequent presenter at user groups including IOUG-A Live!, MOUG, COUG, and OracleWorld. You can reach Tony at (630) 960-2909 or email tony@tusc.com. You can also visit TUSC's Web page at www.tusc.com for this and other presentations.
Paper #536

