Middleware

Using Free Tools to Load Test Your Web-based Application
Chris Ostrowski, TUSC
Introduction
As systems become more and more complex, it is becoming exponentially more difficult for developers and system architects to find bottlenecks in their systems. Proper testing, whether it is through software, scripts or human interaction is an essential part of modern application development for all but the most trivial applications. Using software to perform testing however can be very expensive depending on the scope and configuration of your testing environment. This paper discusses the different types of testing, tools Oracle provides to monitor your system for bottlenecks and two of the most popular free load tools, OpenSTA and JMeter.
What is Load Testing?
As systems have become more complex, the tools used to test those systems, as well as the methodologies behind them have also become more complex. While there are numerous white paper scattered across the internet that espouse various and esoteric testing techniques, there are four basic types of testing recognized by most methodologies:

· Functional – This type of testing focuses on the question, “Does the software do what it is supposed to do?” In this phase of testing, attention is not usually focuses on performance, user interface or “flow” of the application. This phase focuses on the smallest functional part of an application. Success in this phase is solely based on the end result. An example might be a function within a real estate application where an address is used as input and an estimated value of the property is returned.
· Unit – This type of testing is similar to Functional testing, except the focus is shifted to a large part of the application. Instead of focusing on the smallest piece of an application, Unit Testing looks at a larger piece to make sure all of the interactions between the functional components work together. Testers in this phase may start to think about performance issues. Continuing with the real estate example mentioned above, an example of a unit test might entail the loading of information about properties and storing various calculations and attributes about those properties in various places in the database.
· System – This type of testing runs tests against the entire system to make sure the interactions between all of the units function properly. Along with continuing to answer the “Does the software do what it is supposed to do?” question, testers in this phase usually start looking at performance issues.

· User Acceptance – This type of testing focuses on the end-user’s interaction with the application. Major areas focuses on in this phase include the user interface and the “flow” of the application. While performance is not the main focus of this task, feedback from the end-users is invaluable for identifying potential bottlenecks in the application.
· Load – This phase of testing is concerned with the performance of the system and does not take into account any of the functionality or user interface of the application (or applications) in question. Formal load testing programs or in-house developed scripts (or a combination of both) are used to simulate activity on the system. The results are then analyzed and developers and/or system architects can then focus their energies on the areas of the system that use the most resources.
Load testing is usually performed in one of three ways (or a combination of the three), each with their pros and cons.
Scripting

By using in-house developed scripts to perform load testing, organizations can reap a number of benefits. First (and usually foremost), there is no investment of money and resources to acquire and train staff on a testing tool. Many organizations underestimate the time needed for architects to learn new tools and make use of them efficiently. By scripting loads, organizations can make immediate use of resources within the organization who are knowledgeable about business processes to implement load tests quickly. Also, any limitation introduced by a commercial load testing tool is obviously avoided.
There are, however, some serious limitations to using scripting as your primary load testing mechanism. The most important end result of load testing is a report that (as accurately as possible) represents user activity on the system. As such, there is a certain level of “randomness” that has to be built into any representational test. For example, in the real estate application I’ve been referencing throughout this paper, one user may log in and immediately run reports on the previous day’s (or month’s or quarter’s) activity; another user might immediately navigate to a web page to see new listings; another may begin their day entering information. Any meaningful test would need to simulate users doing many, many different activities all at the same time. Also, the randomness of the number of people hitting the system at different times needs to be taken into account – for example, a newspaper site may have a large number of viewers early in the day (when people traditionally read the newspaper) and then have a consistent drop off at the day progresses. Writing scripts to simulate true randomness of both activity (where the users navigate to) and volume (number of users on the site) is incredibly difficult. Also, you are responsible for all reporting – this means that not only will the scripts need to be developed, but some sort of monitoring will need to be used in real time while the tests are running. Building up a repository of results is very difficult in this scenario. Automated testing tools make tasks like these much easier.

Users

Another common technique is to schedule a time and have a bunch of users simulate work on a test system and closely monitor the results. This type of test can be extremely beneficial because of the unforeseen issues that can be uncovered. As well as testers think they have explored every permutation while interacting with an application, there are sure to be things users do (or expect to do) that testers did not anticipate. By having users interact with the system in this way, those activities can be uncovered quickly.

The main drawback to this method is the lost productivity for those workers who are expected to participate in the test. Many organizations are not willing to devote a period of time for workers to stop doing their jobs to run a load test – in many organizations, the belief is that IT should be able to figure out a way to test these applications without directly interfering with the day-to-day business activities of the organization, which is not unreasonable. Also, it is rare that one test will be sufficient – telling upper management that numerous tests need to be run (and therefore, numerous interruptions of the organization’s daily activity will be needed) is almost certainly guaranteed to be met with (in the best scenario) resistance or (in the worst case) hostility. It is also extremely difficult to set up and monitor a test like this, especially if your end-users are spread out over different physical locations. Just like the scripting method, real-time monitoring and reporting will also need to be in place for this method. This can make setting up a test under this circumstance very difficult.
Software

The third common technique for running load tests is to use a piece of software. There are numerous advantages to this method:

· Tests can be scripted relatively easily – in one of the tools we will look at, there is a “recoding” function that allows testers to record http activity. In this way, testers can turn on the recoding function, let users navigate through the application and then save the script. The script can then be run and even use randomized values for inputs on various screens.

· Tests can be run any time and can be run over and over – as opposed to the users method, where end-users are required to stop their daily activities, load testing software can be run any time (that’s feasible) and can be run over and over again with affecting end-user productivity.

· Reporting is integrated into all modern load testing tools eliminating the need for real-time monitoring and giving the testers the ability to build up a repository of results. The ability to run similar tests after making (and recording) changes to the environment is essential.
The major drawback, as mentioned earlier, is cost. Professional testing tools can run tens of thousands of dollars per “seat” (computers they are installed on) making them viable to only the largest of organizations. The two tools featured in this paper, OpenSTA and JMeter are both free to use.
Why Load Test
If you’re reading this paper, you’re probably very interested in implementing a load testing solution, but if there are people within your organization that still need further convincing, here are some bullet points to convince them:

· “A chain is only as strong as its weakest link” – this saying, often attributed to football coach Vince Lombardi, is as relevant to software development today as it was to football 45 years ago. Today there are so many “links in the chain” – databases, networks, disk sub-systems, client machines, browser settings, server configurations, etc. Any of those could be bottlenecks for your application. Being able to identify those bottlenecks quickly and, most importantly, up-front, BEFORE an application is ready to go to production is essential.

· You should go into any project expecting success, but what if your application is very successful? Chances are, the number of users will increase. How can you reliably test the system to anticipate 2x, 4x, or 10x growth in the number of potential users? Another important point to consider – more and more organizations are moving towards an SOA (Service-oriented architecture) model. In this model, existing applications are turned into “services” which are then shared across an organization. It’s very possible that your application today may be used as a service in the future, exposing your code to many, many more potential users than you ever anticipated – being able to simulate larger and larger numbers of users against your code is invaluable.

· Hardware – Certain hardware elements can be upgraded relatively easily – memory, faster disks, etc. But what happens when you start to hit the physical and theoretical limits of a particular system? Load testing can determine the upper limits of capacity your application(s) can handle. By providing this information to upper management, steps can be taken to insure the organization is prepared for growth.

What Does Oracle Provide?
The load testing tools mentioned in this paper are not specific to Oracle or any of Oracle’s tools. I wanted to mention, however, the tools that Oracle provides as part of the Oracle Application Server.

Oracle provides some very sophisticated tools to administer and monitor the various pieces of the Oracle Application Server. Using these web-based tools, administrators can make changes (often on-the-fly) to all of the major Oracle Application Server components, and monitor the number of resources for each component as well as the response times for each component. Oracle does not provide, however, any way of simulating a load against any or all of the Oracle Application Server components. There is also a very significant limitation of the reporting and monitoring tools included with the Oracle Application Server that will be discussed shortly.

The main tool Oracle provides is called the Oracle Enterprise Manager Application Server Control (OEM ASC). If you have used OEM in the past to administer your Oracle databases and expect to be similar for managing your Oracle Application Server instances, you’re in for a shock. The OEM ASC was designed specifically for the application server and looks nothing like the OEM used for database administration. Having said that, it is a very intuitive piece of software to use and most administrators can get running with the OEM ASC pretty quickly.

There are many 1:many relationships to understand when talking about the OEM ASC. A farm is a collection of Oracle Application Server (OAS) instances. There are separate OAS instances for the infrastructure (where security, portal objects and clusting information is held) and for the mid-tier (where components that your end-users interact with live: Portal server, Forms Server, Java containers, etc.). Each instance contains numerous components (the infrastructure has security things like Oracle Internet Directory (OID) and the Single Sign-on (SSO) server and the mid-tier has things like the Portal server, the Forms server, the Discoverer server, etc.) and each of those components has multiple OEM ASC pages where administrators can set properties or monitor different aspects of the component. So the basic 1:many OEM ASC hierarchy looks like this:
· 1 : many

· Farm : OAS instances

· OAS Instance : Instance Components

· Instance Components : OEM ASC setting / monitoring pages

The OEM ASC also provides a sophisticated log mechanism called Log Loader. This service allows administrators to search through logs based on time, error message, error severity, component, etc. Administrators can use this tool for checking of errors, but not for performance problems.
In terms of the monitoring tools, Oracle provides numerous ways of determining how “hard” the OAS components are working at any given point in time. There are pre-defined monitoring pages where things like throughput, response time, disk activity and network activity can be monitored. The most important thing regarding these monitoring tools to remember is this: The OEM version that comes with the OAS does not store any historical information. You can only monitor what is happening on your system at the moment you are looking at it – there is no way to see what was happening the past. The only way to do that is to install (and pay for) the “full-blown” Oracle Enterprise Manager Grid Control product. This is another reason what having a load-testing tool is essential.

Commercial Tools
Below is a listing of the most popular commercial load testing tools available today. This list is by no means complete, but gives a representation of the tools and companies participating in the testing tools market today. As mentioned earlier, these tools range from a few hundred dollars to tens of thousands per seat. Correspondingly, the features and intended purpose of these tools differ greatly:

· LoadRunner - Mercury Interactive acquired by HP in 2006

· IBM Rational Performance Tester

· CA’s QA Center Performance Edition

· OpenDemand’s OpenLoad

· SoftLogica’s WAPT

· Aligent’s NetworkTester

· Pilot’s SiteTester

· InforSolution’s LoadDriver

· Quotium’s QTest

· MoniForce’s WebStress

· AdventNet’s QEngine Web Performance Testing

Free Tools
The free tools in this paper are robust and mature enough to be used in any production environment. In many cases they provide greater functionality and flexibility than many of the commercial tools. For each of these free tools, there is a section below that walks you through using these tools to create a simple test. In those sections, I will discuss the pros and cons for each tool.
· OpenSTA

· JMeter

There is one additional tool I would like to mention. LiveHTTPHeaders is a free extension for the Firefox browser. It will record and give you the ability to save off all HTTP header information your browser generates. When it comes time to build your scripts in either OpenSTA or JMeter, you can simply run your application (with LiveHTTPHeaders running), capture all of the HTTP traffic with LiveHTTPHeaders and copy that information to build your scripts.
OpenSTA
OpenSTA can be downloaded from http://www.opensta.org. The acronym stands for Open Systems Testing Architecture. It is very powerful, yet incredibly easy to use. There are two main limitations, however, that I will discuss at the end of this section.
Setting Up A Test
Setting up a test in OpenSTA involves six activities:

1. Creating collectors

2. Creating Scripts

3. Modeling Scripts

4. Creating Tests

5. Running Tests

6. Displaying Results

Creating Collectors
Creating Collectors involves deciding which Host computers or other devices to collect performance data from and the type of data to collect during a Test-run. OpenSTA supports the creation of NT Performance for recording performance data from Hosts running Windows NT or Windows 2000, and SNMP Collectors for collecting SNMP data from Hosts and other devices running an SNMP agent or proxy SNMP agent. Collector-based Task Groups can be monitored during a Test-run. The data collected can be displayed alongside other results to provide information about a Test-run. Collectors are used to monitor and collect performance data from target components of production systems and Web Application Environments (WAEs) during Test-runs, to help testers evaluate their performance.

A Collector is a set of user-defined data collection queries which determine the type of performance data recording carried out from one or more Host computers or devices during a Test-run. Include them in your Tests to target specific components of the WAEs under test and the Hosts used to run a Test, with precise data collection queries to collect the performance data you need. Create Collectors and incorporate them into your Tests, then run the Test to generate the results data required. Collectors give you the flexibility to collect a wide range of performance data at user defined intervals during a Test-run. A Collector can contain a single data collection query and be used to target a single Host. Or alternatively, they can contain multiple queries and target multiple Hosts. NT Performance Collectors are used for collecting performance data from Hosts running Windows NT or Windows 2000. SNMP Collectors are used for collecting SNMP data from Hosts and other devices running an SNMP agent or proxy SNMP agent. Collectors are stored in the Repository and are included in Tests by reference. This means that any changes you make to a Collector will have immediate affect on all the Tests that use them.

Collector-based Task Groups can be monitored during a Test-run. The specific data collection queries defined within a Collector can be selected and monitored from the Monitoring tab view of the Test Pane. After a Test-run is complete, results are stored in the Repository from where they are available for immediate display and analysis. The data collected can be displayed alongside results from previous Test-runs associated with the Test, to provide comparative information about target system performance. Results collected by all the SNMP Collectors included in a Test are saved in the Custom SNMP file. Results collected by all the NT Performance Collectors you include are saved in the Custom NT Performance file. Results are displayed by opening a Test, then using the Results Window displayed in the Results tab of the Test Pane to open the display options listed. Results data can be can be exported to spreadsheet and database programs for further analysis, or printed directly.

Creating Collectors involves deciding which Host computers or other devices to collect performance data from and the type of data to collect during a Test-run. Create SNMP Collectors to target any Hosts capable of running an SNMP agent or proxy SNMP agent which can include computers and other devices. Testers can also create NT Performance Collectors to collect performance data from Hosts running Windows NT or Windows 2000.
An open Collector is represented as a table in the Collector Pane. This is the workspace where you can develop a Collector. Each data collection query you define occupies a row within the table. When you first open a new Collector there are no rows or data collection queries defined and the Edit Query dialog box appears automatically. Use this dialog box to setup a new query. Work through the configuration settings to add a unique query name, choose the Host from which performance data will be collected, select the query type and to specify the frequency for data to be collected. You can also select to record the raw value of the data, or the Delta Value which records the difference between the data collected at each interval.

In existing Collectors that already have one or more data collection queries defined, double-click a row in the table to open Edit Query dialog box and make any changes you need. Tested can add new rows and define additional data collection queries. The Collector settings are automatically saved in the Repository when you switch to a different function or exit from OpenSTA. There is only a single instance of the Collectors you create. They are included in Tests by reference which means that they can be used in many different Tests. The data collection and monitoring settings you define apply to all the Tests that use it. Similarly, any changes you make are immediately reflected in all the Tests that reference it. The Collectors you incorporate into Tests can be removed by overwriting them with new selections or deleting them from a Test, but this does not delete them from the Repository. NT Performance Collectors are saved as .NTP files, SNMP Collectors are saved as .SMP files. A Collector name must be defined according to the rules for OpenSTA Datanames, with the exception that the name can be up to 60 characters long.

Creating Scripts
Creating Scripts involves deciding how you expect clients to use the WAE under test, then recording browser sessions which incorporate this behavior to produce Scripts. Scripts encapsulate the browser requests issued during a Web session at the HTTP/S level and form the basis of your Tests. Browser requests and WAE responses are recorded using the OpenSTA Gateway. It is launched automatically when you begin recording a Script using the Script Modeler Module. The Gateway records the HTTP/S requests issued by a browser during Web sessions using SCL scripting language, which enables you to model their content.

After you have planned your performance Test structure, you need to develop the Test contents by recording the Scripts that will be included in your Tests. Launch Script Modeler to record and model Scripts, then incorporate them into your Tests. Scripts are HTTP/S recordings of the Web sessions you conduct using Script Modeler which represent the HTTP/S traffic they record as SCL code. The browser requests recorded are automatically encoded using SCL during the capture process. This gives the HTTP/S data an intelligible structure and makes it possible to model the Script. Script Modeler's editing capabilities enable you to record and edit Scripts to simulate the behavior of thousands of virtual users when a Test is run.

Scripts form the content of your Tests and enable you to generate the Web activity you want during a Test-run. They are stored in the Repository. From here they can be selected for inclusion by reference in multiple Tests. When you run a Test, the Scripts that it incorporates are run according to the Task Group settings you have specified. These settings determine the load directed against the target WAE when a Test is run. Scripts encapsulate the Web activity you need to reproduce and the Task Group settings control the way the Scripts are run. Together, these elements control the type of the test environment that is simulated when a Test is run.

Before you begin to record your Scripts you should check your recording configuration. There are several options to choose from depending on the software setup you have on your computer and the network configuration you are working within. You can select the type of browser you want to use to record your Scripts, as well as the method of connecting to the target WAE.

Script Modeler creates a Script exactly as the browser requested the Web pages and their contents. They are created by the Gateway and consist of SCL code, including GET, POST and HEAD commands, which represent corresponding HTTP/S instructions. Scripts represent HTTP/S browser requests in SCL code and are saved in a .HTP file. During the same recording session the corresponding WAE responses are recorded by the Gateway in a .ALL file. This includes DOM, HTML and Web page structure data. The full detail of a Web session is stored in these two files.

After you have clicked the Record button and entered the first URL in your browser's Address text box, the WAE responds by sending the HTTP/S data that forms the content of the Web page displayed by your browser. Loading a Web page involves parsing or compiling the Web page structure from the raw HTTP/S data returned by the WAE in response to the URL or PRIMARY GET. The content is then rendered on screen by the browser whilst concurrently making additional, asynchronous requests on other TCP connections via secondary GETs for the remaining contents of the Web page. The browser continues to issue requests and render any remaining content until the Web page is fully loaded. The Gateway records and formats this information. Browser requests hit the target WAE via the Gateway, across the Internet or other network. Browser requests are recorded by the Gateway as a Script (.HTP file). WAE responses are recorded by the Gateway in a .ALL file.

Modeling Scripts

Modeling Scripts enables you to develop realistic Tests and improve the quality of the Test results produced. There are extensive modeling options available within Script Modeler that can help you to develop realistic performance Tests. When you are familiar with the structure of Scripts and in particular the SCL code they are written in, you will be well equipped to model them. SCL is a simple scripting language that gives you control over the Scripts you create. It enables you to model Scripts to accurately simulate the Web activity and to generate the load levels you need against target WAEs when a Test is run.

How you model the Scripts you record or whether you choose to do so at all, depends on the functionality of the WAE you are testing and the type of Web activity you want to Test. A key modeling technique involves the addition of variables to a Script which enable you to change the fixed values they record. For example, if a Script records login details which identify the user who conducted the original browser session, you can replace this information with a variable that changes the user login details each time the Script is replayed during a Test-run.

Variables can be incorporated into Scripts to control a variety of elements including user selections. For example, a Script may record items purchased by the user which you need to vary in order to make your Test more realistic. Introducing a variable to replace the recorded selections enables you to do this. Using variables to change the activity and the identity of the Virtual Users enables you to use a single modeled Script to simulate multiple unique browser users when the Test is run.

Script Modeling is enhanced beyond the representation of HTTP requests with SCL and the addition of variables to a Script, by providing the capability to include objects from a Web page in a Script. OpenSTA provides the capability to use DOM objects from the Web pages that are saved at the same time a Script is recorded, to model the corresponding Script. This modeling technique is known as DOM Addressing and can be used to verify the results of a Test by checking that the WAE responses returned during a Test-run are correct. If you are developing a Test which includes Scripts that run in sequence within the same Task Group you need to model the Scripts for the Task Group to replay correctly when the Test is run. If your WAE uses cookies or issues session identities, then each Script you create will contain a unique identity that has no connection to the other Scripts included in the Task Group. You need to establish a connection between the Scripts by modeling them.

Whether you are developing a modular Test structure or you are using Task Groups that reference a single Script, it is important to check that the Test is running correctly. Make use of the DOM Addressing function to help verify a Test-run. You can also run a single stepping session to check that the WAE responses are appropriate. In addition to the SCL code, knowledge of HTTP commands is useful in reading and modeling Scripts.

Creating Tests

Creating Tests first involves creating the Scripts and Collectors you want to include in them. Then select the Scripts and Collectors you need and add them one at a time to a Test. Scripts and Collectors are included in Tests by reference. This means that you can include them in multiple Tests in which different Task Group settings apply. The Scripts and Collectors you add are known as Tasks which are structured in Script-based and Collector-based Task Groups. A load Test must contain at least one Script-based Task Group which can include one, or a sequence of Scripts. Collector-based Task Groups are optional.

Create and run Collector-only Tests for performance monitoring and data collection within production scenarios. Or alternatively, use a load Test that includes Collectors and disable the Script-Task Groups it includes, to turn off the load element they supply before running the Test within a production monitoring environment. The Test scenario you want to simulate during a Test-run can be controlled by adjusting the Task Group settings. Assemble the Scripts and Collectors of your Test then select the Task Group settings you want to apply in order to generate the level of load required. For Script-based Task Groups these settings include the Host used, the number of Virtual Users and the number of Script iterations per Virtual User. For Collector-based Task Groups the Host used to run the Task Group can be defined.

The contents and structure of your Test will depend on the type of Test you are conducting, the nature of the system you are targeting and the aims of your performance test. In its simplest form a Test can consist of just one Task Group running a single Collector or a Script. However, to produce a fully automated performance Test that accurately simulates the test scenario you want, as well as producing the results data required, it is usually necessary to develop a more detailed Test structure. Script and Collector Tasks are contained by Task Groups in a Test. Task Groups enable you to control when Tasks run and how they operate during a Test-run. A Test can include one or more Collector-based Task Groups, one or more Script-based Task Groups or a combination of both, depending on whether you are developing an HTTP/S load Test or a production monitoring Test. Add Scripts to generate the HTTP/S load levels required against target systems during a Test-run. Add Collectors to monitor and record performance data from Hosts.

The Task Groups that comprise a Test can be enabled or disabled, before or during a Test-run. Disabling the Script-based Task Groups means that no load is generated when the Test is run. This gives you the ability to use the same Test within both load Test and production monitoring scenarios and enables you to directly compare the performance of a target system within these two environments. After you have added the Scripts and Collectors you need and applied the Task Group settings required, the Test is ready to run. Tests can be run using networked computers on remote Hosts to execute the Task Groups that comprise a Test. Distributing Task Groups across a network enables you to utilize the processing resources of multiple networked computers. It is then possible to run HTTP/S load Tests that generate realistic heavy loads simulating the activity of many users. In order to do this, HTTP/S Load must be installed on each Host and the OpenSTA Name Server must be running and configured to specify the Repository Host for the Test. For more information on configuring the OpenSTA Name Server to run a distributed Test, see Distributed Tests. During a Test-run you can monitor Task Group replay from within the Test Pane. Then display the results collected after a Test-run is complete to assist you in analyzing and improving the performance of target systems.

Running Tests

Running a Test enables you to imitate real end user Web activity and accurately simulate the test conditions you want in order to generate the level of load required against target WAEs. The Task Groups that comprise a Test can be run on remote Hosts during a Test-run. Distributing Task Groups across a network enables you to run Tests that generate realistic heavy loads simulating the activity of many users. You can monitor the progress of a Test-run by selecting a Script-based Task Group and tracking the Scripts and the Virtual Users that are currently running from the Monitoring tab of the Test Pane.

Running a Test enables you to simulate real end user Web activity and to collect performance data from the components of the system under test. Use the results you produce during a Test-run to help evaluate the performance of target Web Application Environments (WAEs). You can also use HTTP/S Load to create and run Collector-only Tests to monitor WAEs in a production scenario. The ability to run load Tests and production monitoring Test means that you can directly compare the performance of your target system within these two environments.

OpenSTA's distributed software testing architecture enables you to run the Task Groups that comprise a Test on remote Hosts during a Test-run. Distributing Task Groups across a network enables you to run Tests that generate realistic heavy loads simulating the activity of many Virtual Users. HTTP/S Load provides a variety of data collection and monitoring functions. When a Test is run a wide range of results data is collected automatically. This information includes Virtual User response times and resource utilization from all WAEs under test. You can also create and reference Collectors in your Tests to enhance the Test-run monitoring and data collection options available.

Create and add Collectors to your Tests to enhance the results data produced during a Test-run. Use SNMP and NT Performance Collectors to monitor, graph and record performance data from Host computers and other devices that form part of the system under Test, as well as the Test network. You can monitor the progress of a Test-run and all of the Task Groups it contains from the Monitoring tab view of the Test Pane. Select NT Performance and SNMP Collector Task Groups to track the data collection queries they define. Select a Script-based Task Group to track the Scripts and the Virtual Users that are currently running.
Running a Test is a straightforward procedure, because the Task Group settings of the Collectors and Scripts you include in the Test have already been specified during Test creation. Open the Test you want to run and click the Start Test button in the toolbar. At the end of the Test-run all results are stored in the Repository in date and time stamped folders. Display the data collected to help analyze the performance of the target system from the Test Pane of Commander.

Displaying Results

Running a Test then displaying the results enables you to analyze and assess whether WAEs will be able to meet the processing demands that will be placed on them. HTTP/S Load provides a variety of data collection and display options to assist you in the analysis of Test results. When a Test is run a wide range of data is generated automatically. It enables you to collect and graph both Virtual User response times and resource utilization information from all WAEs under test, along with performance data from the Hosts used to run the Test.

After a Test-run is complete the results can be displayed. HTTP/S Load provides a variety of data collection and display options to assist you in the analysis of Test results. Running a Test and displaying the results enables you to identify whether the Web Application Environments (WAEs) under test are able to meet the processing demands you anticipate will be placed on them.
Depending on the category of results you select, data is displayed in graph or table format. You can choose from a wide range of tables and customizable graphs to display your results which can be filtered and exported for further analysis and print. Use the Results Window to view multiple graphs and tables simultaneously to compare results from different Test-runs. When a Test is run a wide range of results data is collected automatically. Virtual User response times and resource utilization information is recorded from all Web sites under test, along with performance data from WAE components and the Hosts used to run the Test. Results categories include the Test Configuration option which presents a brief description of the Test and the Task Groups settings that applied during a Test-run. The Test Audit log records significant events that occur during a Test-run and the HTTP Data List records the HTTP/S requests issued, including the response times and codes for every request. The Timer List option records the length of time taken to load each Web page defined in the Scripts referenced by a Test. Creating and referencing Collectors in a Test helps to improve the quality and extend the range of the results data produced during a Test-run. Collectors give you the ability to target the Host computers and devices used to run a Test and the back-end database components of WAEs under test, with user-defined data collection queries. Use NT Performance and SNMP Collectors to collect data from Host devices within target WAEs or the test network.

The range of results produced during a Test-run can depend on the content of the Scripts that are referenced by a Test. For example Report and History logs are only produced if the Scripts included have been modeled to incorporate the SCL commands used to generate the data content for these logs.

Limitations
All of these things sound pretty great, and the price is certainly right, so why wouldn’t this be the obvious choice for all organizations? First of all, OpenSTA can be run on Windows only – there are no other platforms it can be run on. Secondly, there are only a few browsers that are supported for OpenSTA’s “recording” feature, all of which are pretty old – Internet Explorer 4 and 5 and Netscape Navigator 4.7. I have tried Internet Explorer 6 and 7, Firefox 1.x and 2.x and Safari for Windows all without success – you must have one of the versions of the browsers specified in order for OpenSTA to function properly.

Bottom Line

OpenSTA doesn’t have some of the advanced reporting or customization features JMeter has, but it is, by far, the easiest tool to set up web tests (providing the Netscape 4.7/IE4/IE5 limitation doesn’t affect you) and find the bottlenecks on your system. It is a very easy tool to learn and can be implemented in a very short period of time without a huge learning curve.
JMeter
JMeter can be downloaded from http://jakarta.apache.org/jmeter/. Don’t let the URL fool you – JMeter is not dependant on the Apache web server at all. It is “lumped” in with Apache because it was developed to test the Apache JServ module. Other developers took the original tool and expanded its features so that it can be used to load test any type of web application. One of the nicest features of JMeter is that fact that it is 100% written in Java – this provides true platform independence (in theory). I have run JMeter on Windows, Linux (numerous flavors) and Mac OS X all without incident.
Building a Test Plan

A test plan describes a series of steps JMeter will execute when run. A complete test plan will consist of one or more:

· Thread Groups - Thread group elements are the beginning points of any test plan. All elements of a test plan must be under a thread group. As the name implies, the thread group element controls the number of threads JMeter will use to execute your test. The controls for a thread group allow you to set the number of threads, set the ramp-up period and set the number of times to execute the test. Each thread will execute the test plan in its entirety and completely independently of other test threads. Multiple threads are used to simulate concurrent connections to your server application. The ramp-up period tells JMeter how long to take to "ramp-up" to the full number of threads chosen. If 10 threads are used, and the ramp-up period is 100 seconds, then JMeter will take 100 seconds to get all 10 threads up and running. Each thread will start 10 (100/10) seconds after the previous thread was begun. If there are 30 threads and a ramp-up period of 120 seconds, then each successive thread will be delayed by 4 seconds. Ramp-up needs to be long enough to avoid too large a work-load at the start of a test, and short enough that the last threads start running before the first ones finish (unless one wants that to happen). Start with Ramp-up = number of threads and adjust as needed. By default, the thread group is configured to loop once through its elements. Version 1.9 introduces a test run scheduler . Click the checkbox at the bottom of the Thread Group panel to reveal extra fields in which you can enter the start and end times of the run. When the test is started, JMeter will wait if necessary until the start-time has been reached. At the end of each cycle, JMeter checks if the end-time has been reached, and if so, the run is stopped, otherwise the test is allowed to continue until the iteration limit is reached. Alternatively, one can use the relative delay and duration fields. Note that delay overrides start-time, and duration over-rides end-time. The following steps are used to configure a Thread Group:
· Set default values (Number of Threads, Ramp Up Period, etc.)

· Set Default HTTP Requests (Protocol, Server Name, etc.)

· Add cookie support

· Add HTTP requests (this is where using the LiveHTTPHeader add-in for Firefox mentioned earlier will make your life much easier)

· Controllers - JMeter has two types of Controllers: Samplers and Logical Controllers:

· Samplers tell JMeter to send requests to a server. For example, add an HTTP Request Sampler if you want JMeter to send an HTTP request. You can also customize a request by adding one or more Configuration Elements to a Sampler. Samplers tell JMeter to send requests to a server. JMeter samplers include FTP Request, HTTP Request, JDBC Request, Java object request, LDAP Request, SOAP/XML-RPC Request, and WebService (SOAP) Request. Each sampler has several properties you can set. You can further customize a sampler by adding one or more Configuration Elements to it. Note that JMeter sends requests in the order that the samplers appear in the tree. If you are going to send multiple requests of the same type (for example, HTTP Request) to the same server, consider using a Defaults Configuration Element. Each controller has one or more Defaults elements. Remember to add a Listener to your Thread Group to view and/or store the results of your requests to disk. If you are interested in having JMeter perform basic validation on the response of your request, add an Assertion to the Request controller. For example, in stress testing a web application, the server may return a successful "HTTP Response" code, but the page may have errors on it or may be missing sections. You could add assertions to check for certain HTML tags, common error strings, and so on. JMeter lets you create these assertions using regular expressions. For more information, see Samplers.

· Logical Controllers let you customize the logic that JMeter uses to decide when to send requests. For example, you can add an Interleave Logic Controller to alternate between two HTTP Request Samplers. Logic Controllers let you customize the logic that JMeter uses to decide when to send requests. Logic Controllers may have as child elements any of the following: Samplers (requests), Configuration Elements, and other Logic Controllers. Logic Controllers can change the order of requests coming from their child elements. They can modify the requests themselves, cause JMeter to repeat requests, etc. To understand the effect of Logic Controllers on a test plan, consider the following test tree:

· Test Plan

· Thread Group

· Once Only Controller

· Login Request (an HTTP Request)

· Load Search Page (HTTP Sampler)

· Interleave Controller

· Search "A" (HTTP Sampler)

· Search "B" (HTTP Sampler)

· HTTP default request (Configuration Element)

· HTTP default request (Configuration Element)

· Cookie Manager (Configuration Element)

The first thing about this test is that the login request will be executed only the first time through. Subsequent iterations will skip it. This is due to the effects of the Once Only Controller. After the login, the next Sampler loads the search page (imagine a web application where the user logs in, and then goes to a search page to do a search). This is just a simple request, not filtered through any Logic Controller. After loading the search page, we want to do a search. Actually, we want to do two different searches. However, we want to re-load the search page itself between each search. We could do this by having 4 simple HTTP request elements (load search, search "A", load search, search "B"). Instead, we use the Interleave Controller which passes on one child request each time through the test. It keeps the ordering (ie - it doesn't pass one on at random, but "remembers" its place) of its child elements. Interleaving 2 child requests may be overkill, but there could easily have been 8, or 20 child requests. Note the HTTP Request Defaults that belongs to the Interleave Controller. Imagine that "Search A" and "Search B" share the same PATH info (an HTTP request specification includes domain, port, method, protocol, path, and arguments, plus other optional items). This makes sense - both are search requests, hitting the same back-end search engine (a servlet or cgi-script, let's say). Rather than configure both HTTP Samplers with the same information in their PATH field, we can abstract that information out to a single Configuration Element. When the Interleave Controller "passes on" requests from "Search A" or "Search B", it will fill in the blanks with values from the HTTP default request Configuration Element. So, we leave the PATH field blank for those requests, and put that information into the Configuration Element. In this case, this is a minor benefit at best, but it demonstrates the feature. The next element in the tree is another HTTP default request, this time added to the Thread Group itself. The Thread Group has a built-in Logic Controller, and thus, it uses this Configuration Element exactly as described above. It fills in the blanks of any Request that passes through. It is extremely useful in web testing to leave the DOMAIN field blank in all your HTTP Sampler elements, and instead, put that information into an HTTP default request element, added to the Thread Group. By doing so, you can test your application on a different server simply by changing one field in your Test Plan. Otherwise, you'd have to edit each and every Sampler. The last element is a HTTP Cookie Manager . A Cookie Manager should be added to all web tests - otherwise JMeter will ignore cookies. By adding it at the Thread Group level, we ensure that all HTTP requests will share the same cookies. Logic Controllers can be combined to achieve various results.

· Listeners - Listeners provide access to the information JMeter gathers about the test cases while JMeter runs. The Graph Results listener plots the response times on a graph. The "View Results Tree" Listener shows details of sampler requests and responses, and can display basic HTML and XML representations of the response. Other listeners provide summary or aggregation information. Additionally, listeners can direct the data to a file for later use. Every listener in JMeter provides a field to indicate the file to store data to. There is also a Configuration button which can be used to choose which fields to save, and whether to use CSV or XML format. Note that all Listeners save the same data; the only difference is in the way the data is presented on the screen. Listeners can be added anywhere in the test. They will collect data only from elements at or below their level.

· Timers – By default, a JMeter thread sends requests without pausing between each request. We recommend that you specify a delay by adding one of the available timers to your Thread Group. If you do not add a delay, JMeter could overwhelm your server by making too many requests in a very short amount of time. The timer will cause JMeter to delay a certain amount of time before each request that a thread makes. If you choose to add more than one timer to a Thread Group, JMeter takes the sum of the timers and pauses for that amount of time before executing the samplers to which they apply.

· Assertions - Assertions allow you to assert facts about responses received from the server being tested. Using an assertion, you can essentially "test" that your application is returning the results you expect it to. For instance, you can assert that the response to a query will contain some particular text. The text you specify can be a Perl-style regular expression, and you can indicate that the response is to contain the text, or that it should match the whole response. You can add an assertion to any Sampler. For example, you can add an assertion to a HTTP Request that checks for the text, "</HTML>". JMeter will then check that the text is present in the HTTP response. If JMeter cannot find the text, then it will mark this as a failed request. To view the assertion results, add an Assertion Listener to the Thread Group. Failed Assertions will also show up in the Tree View and Table Listeners, and will count towards the error percentage in the Aggregate and Summary reports.

· Configuration elements - A configuration element works closely with a Sampler. Although it does not send requests (except for HTTP Proxy Server), it can add to or modify requests. A configuration element is accessible from only inside the tree branch where you place the element. For example, if you place an HTTP Cookie Manager inside a Simple Logic Controller, the Cookie Manager will only be accessible to HTTP Request Controllers you place inside the Simple Logic Controller. Also, a configuration element inside a tree branch has higher precedence than the same element in a "parent" branch.
Execution Order of Elements

1. Pre-Processors

2. Timers

3. Sampler

4. Post-Processors (unless SampleResult is null)

5. Assertions (unless SampleResult is null)

6. Listeners (unless SampleResult is null)
Reporting
Use the Listeners (defined above) to see the output from your tests.

Bottom Line

Of the two tools discussed in this paper, JMeter has a much more robust set of features than OpenSTA. It is cross-platform and is not dependant on any browser version to function. It does, however, have a greater learning curve and requires more sophisticated resources to set up and interpret its reporting data. Having said that, JMeter is a superb tool for load testing with its feature set rivaling commercial products costing thousands of dollars. Considering the price, all organizations would be foolish to not investigate implementing JMeter.

Summary

Load testing is an essential part of modern web development. Oracle provides numerous monitoring tools for administrators using the Oracle Application Server, but those tools are limited by the fact that they can only view a snapshot of the system and cannot be used to simulate loads. Modern load-testing tools can use web protocols to simulate web traffic and have reporting modules that allow testers to build a repository of results that can be analyzed and compared in order to determine the optimal configuration for a given system. The two tools profiled in this paper provide a solid load testing environment at no cost to the organization. OpenSTA, with its emphasis on simplicity, is very easy to set up and configure. While not providing the advanced features of other load testing tools, it will appeal to those organizations that don’t have a lot of resources to devote to this activity. JMeter is an extremely comprehensive tool that does not have the OpenSTA limitations of only being able to be run on Windows or having to use a specific browser. As it does have many more features, the learning curve associated with it is higher, but all organizations will greatly benefit from the extra time needed to master this tool.

References:
OpenSTA User Guide: http://opensta.org/docs/ug/
Apache JMeter User’s Manual: http://jakarta.apache.org/jmeter/usermanual/index.html
Oracle® Application Server Concepts 10g Release 2 (10.1.2): http://download.oracle.com/docs/cd/B14099_19/core.1012/b13994.pdf

8

 Paper #516

