IOUG Development – Application Express

APEX Under the Covers

Karen Cannell, Integra Technology Consulting

Introduction

The best way to learn Oracle Application Express (APEX) is to see a useful feature demonstrated, then take a look "under the covers" to learn exactly how that feature was implemented. This paper discusses a series of not-so-intuitive features in APEX, then takes a detailed look under the covers at the implementation details, using a mix of APEX constructs, AJAX and JavaScript. The focus is on how-to, where else to use similar constructs, and adopting existing code for reuse. The goal is for readers to broaden their approach to APEX development, and to gain a few more tactics for their APEX toolbox.
APEX is a web-based, wizard-driven rapid application development tool for the Oracle database. APEX developers can quickly generate production web applications – forms, reports and wizards – by using the standard options of the browser-based development environment. To implement features beyond the out-of-the-box APEX functionality, one must delve a bit deeper and learn how APEX works behind the scenes.
How It Works

The general flow of an APEX application is:

· APEX developers use the web-based declarative builder interface to specify how to build their application’s web pages. (The APEX builder interface is accessible to developers through a link at the bottom on the page of an un-deployed APEX application. The developer links are typically hidden in the production environment.)

· APEX stores these “specifications” in the APEX repository.

· At runtime, APEX uses Pl/SQL packages to generate HTML pages using data contained in the APEX repository.
APEX page generation typically involves a collection of technologies: HTML and Cascading Style Sheets for presentation and layout, SQL, PL/SQL and web services for page generation, business logic, and database transactions. Javascript, AJAX and DHTML may be employed to enhance basic web page functions. Short of being an expert in all of these technologies, we can examine existing code and build upon the examples of others.
Learn APEX from APEX

One optimal way to learn APEX is by looking at APEX applications: the original APEX source code, the Oracle APEX packaged applications, and APEX applications by other developers. Numerous quality APEX blogs offer hundreds of quality examples. As APEX developers we should use them, learn from them, expand upon them and then share our work with the APEX community.

Since APEX is written in APEX, it is possible to create a separate workspace, install the APEX packages in that workspace to create a view-only version of the APEX core applications. The details of how to do this are in Appendix A. The Oracle APEX packaged applications are ready to download and install. These often showcase the new features of the latest APEX release. The APEX forum and APEX blogs provide even more APEX code examples, some as downloadable applications and some as applications that illustrate the how-to behind the scenes. All of these are excellent sources of APEX learning.

Scrappy Thinking, Scrappy Coding

Given all the available examples, there are still cases where you need to build from scratch, or adapt an existing construct to suit your requirements. This is where the APEX developer needs to look under the covers, and to get a bit scrappy. By “look under the covers”, I mean to look at the code and methods employed to produce a result. By “scrappy”, I mean to take a piece of code from here, a scrap of an idea from there, perhaps a scrap of JavaScript from yet another location and weave them all together to achieve the desired purpose. Of course we could write everything from scratch – but why? (I leave that discussion for another paper). I should note that by scrappy I do not mean sloppy or disorganized. The suggestion is that we can and should learn from, reuse and build upon the quality examples available to us.

This paper presents a series of examples where a bit of scrappy thinking and scrappy coding was applied to achieve the desired results. All of the examples contained in this paper are simple. The strategy is to use simple examples to illustrate the general concepts, leaving solutions that are more complex to the reader. The intent is to open the door; to get the reader thinking of the possibilities exposed by taking a look under the covers of some simple APEX examples.

Deferred-Action Report

This deferred-action report does not return results until the user enters some value in the search criteria. The reason for deferred-action is to avoid returning the entire result set, due to the large volume of data, when only a small number of rows are required.

The interface is a reference tool to retrieve addresses, phone numbers or permit information of individual participants that may be needed for other functions. It is never necessary to return all records – users only need a quick lookup based on search criteria they enter.
When a user first navigates to the report page, no results are returned. When the user enters a value in the search field, the report displays the rows that match the search criteria.

[image: image1.png]Source

Region Source

rcrrye,

nsTaTEn,

rz1RS",

SUBSTR (phone_nbr,1,3) |1'~"||SUBSTR (phone_zbz, 4,3) 11
"psoNE_NsR",

rEMRTLY

from "MY_PINEO"

|vhere (corporate name IS NOT NULL OR

o e o e

(

|1 SUBSTR (phone_nbx, 7,4)

instr (upper ("BA_TYPE™) , upper (nvl (:P4_REPORT_SEARCH, "PA_TYEE"))) > 0 or

instr (upper ("SUBPLIER_ID") , upper (nyl(:P4_REBORT_SEARCH, "SUBELIER_ID"))) > 0 or
instr (upper ("LICENSE_NBR") , upper (nyl (:P4_REPORT_SEARCH, "LICENSE_NBR"))) > 0 or
inscr (upper ("DEALER_NUMSER") ,upper (Ry1 (:B4_REPORT_SEARCH, "DEALER_NUMBER™))) > 0
instr (upper ("EIN_SSN") , upper (avl (:P4_REPORT_SEARCH, "EIN SSN"))) > 0 or

inscr (upper ("CORFORATE NAME") , upper (RY1 (:P4_REPORT_SEARCH, "CORPORATE_NAME™))) _>'_|

L1} |

@ Use Query-Specific Column Names and Validate Query
€ Use Generic Column Names (parse query at runtime only)

Figure 1 – Deferred Action Report

[image: image2.png]Source

‘Source Used [Aways. eplacing any existing value in session tate =

‘Source Type [SGL Query — =

[staictext) _[DB Colunn] [SOL Query] ~ [PLISQL expression] [PLISL funcion body]

Maintain session state [Persesson =

‘Source value or expression

Post Calculation Computation
T

Figure 2 – Deferred Action Report Query: Query Control Item

Under the covers, the solution is to add a hidden item that controls the WHERE clause of the report query. The hidden item defaults to an arbitrary value - ‘OFF’ in this case – that ensures no results as long as the Search item value is NULL When a value is entered in the Search field, the hidden item is reset– to ‘ON’ in this case - and the query returns results.

[image: image3.png]Footer Text
[esevie>
#23axLoading (padding: Spx; font-size:18px;wideh: 300px; text-align: cente

[solid $666;background-color:$EEE;
Change font, width//height, location on
page and colors in the <style> tag

[</sty1e>
l<aiv 1a="Ajaxloading” style="aisplayinone;">... §P41 AJAX_LOAD MSG..
src="#IMAGE PREFIX$processing3.gif” ia="wait® /></div>

erc:s0titop

<img

Change displayed message
and/or image in the <div> tag

Figure 3 – Source for Query Control Item

The value of the hidden item is set by a DECODE statement, shown in Figure 3. The hidden item is simply a flag in the WHERE clause that controls whether values the report returns values or not. If ‘OFF’, the hidden item condition in the WHERE clause evaluates to FALSE and the report returns no rows. If ‘ON’, the condition evaluates to TRUE and the report returns all rows matching the search criteria. The simple query control item values of ‘OFF’ and ‘ON’ were chosen for clarity, in hopes that future maintainers of the code will readily understand the purpose of the hidden query control item (whether or not they read the documentation!).

The point of this example is to demonstrate how to employ creative conditions in the WHERE clause of a query to achieve the desired report results and behavior. It is a reminder that our report is a SQL query, and we have the full power of that tool at our disposal. An alternative to the hidden query control item is to employ a select list or radio group, and require the user to make a selection in order to view values in the report. Another option is to make display of the report region conditional on a not-NULL Search item value, in which case the Search item would have to be displayed in a different, visible region. The possibilities are endless, limited only by what you can put in a SQL query and, specific to this example, in the WHERE clause of a SQL query.

Inline Report Table

The need was to display a master-detail set of data in a single report row, such as a display of the permits owned by a participant in the same row as the participant name and address, or a display of matching participants in a warehouse, as in Figure 4.

Under the covers, the HTML solution is to display a table within a table. The SQL and PL/SQL-level solution to produce the HTML table-within-a-table is to employ a function that returns an HTML table as one column of the SQL query

[image: image4.png]|participant Match Home Page

R W -

Match Administration Review & Confirm Matches Reorganized Participants Source Participants

Listing 1 shows one such function. The function simply constructs and returns a string that contains the HTML tags to display an HTML table within the column. The function is included as a column in the SQL query of the report. Note that the function should include style tags and formatting to match that of the parent report. Additional conditional highlighting or formatting may coded into the function as required.

Figure 4 – Inline Table Report

FUNCTION GET_PERMITS_INLINE(p_particip_id IN NUMBER,

 p_limit IN PLS_INTEGER DEFAULT 5) RETURN VARCHAR2 AS

 l_str VARCHAR2 (32767);

 l_cnt NUMBER := 0;

 v_limit PLS_INTEGER := 10;
 BEGIN

 v_limit := LEAST(v_limit, p_limit);

 l_str := '<table class="inlineTable">';

 l_str := l_str || '<tr><th class="t13ReportHeader">Lic #</th>'||

 '<th class="t13ReportHeader">Iss Agcy</th>'||

 '<th class="t13ReportHeader">Type</th>'||

 '<th class="t13ReportHeader">Lic Type</th></tr>';

 FOR cur IN (SELECT license_nbr, license_type,

 license_issdate, license_expdate,

 partner_abbrev, permit_type

 FROM reorg_permits rp,

 partners prt

 WHERE rp.iss_agency = prt.partner_id

 AND rp.participant_id = p_particip_id)

 LOOP

 l_str := l_str || '<tr>';

 l_str := l_str

 || '<td class="t13data">'

 || cur.license_nbr

 || '</td><td class="t13data">'

 || cur.partner_abbrev

 || '</td><td class="t13data">'

 || cur.permit_type

 || '</td><td class="t13data">'

 || cur.license_type

 || '</td>';

 l_str := l_str || '</tr>';

 l_cnt := l_cnt + 1;

 EXIT WHEN l_cnt > 10;

 END LOOP;

 l_str := l_str || '</table>';

 IF l_cnt = 0

 THEN

 RETURN '';

 ELSE

 RETURN l_str;

 END IF;

 END GET_PERMITS_INLINE;

Listing 1 – PL/SQL Function to return an HTML Table

The point of this example is to, again, demonstrate how creative SQL query construction can achieve the desired results on an HTML page. In this case, an inline function returns the HTML code to display an in-row table of the row details.

Sticky Show-Hide

Sticky Hide-Show is a packaged APEX application available on the APEX web site. The requirement for this example was to initially show a region and then allow users to selectively hide the region when they are done with the functions in that region. This was quickly accomplished by reuse of the Sticky Hide-Show application to construct a Sticky Show-then-Hide region template and the associated JavaScript code.

[image: image5.png]iy

generic_listgif ‘generic_nochid.gif fgeneric_spen.gif,

Figure 5 – Sticky Show-then-Hide Regions, initially open

The Sticky Show-then-Hide region is initially open. From there, the application remembers the open or closed setting.
Under the covers, the implementation is the same as the Sticky Hide-Show application, .except for setting the initial region template to display (open), and to use the minus sign icon instead of a plus sign.

The same key code elements apply:

· The PL/SQL SHOW_HIDE_MEMORY package, which contains the SHOW_HIDE_COLLECTION and SHOW_HIDE_OUTPUT procedures.

· A TEMPORARY_ITEM application item to temporarily hold the value from the AJAX call

· Two application processes, SHOW_HIDE_COLLECTION and SHOW_HIDE_OUTPUT, which call the SHOW_HIDE_MEMORY procedures.

· JavaScript in the HTML Header attribute on the pages that include Sticky Show-Hide regions:

· <script src="#WORKSPACE_IMAGES#apex_show_hide_region.js" type="text/javascript"></script>
· A new region template, which is an edited version of the Hide and Show Region template to display the close (minus) icon and to include the JavaScript toggle function to toggle and save the state (open or closed) of the region..
This last step is where the Show-then-Hide implementation differs from the Hide-then-Show, as the template must be modified to be open initially and display the minus icon instead of the plus icon.
[image: image6.png]Source
‘Source Used [Aways. eplacing any existing value in session tate =

‘Source Type [SGL Query — =

[statictext] _[DB Colurm] [SOL Query] [PLISQL expression]

Maintain session state [Persesson =

‘Source value or expression

[PUSQL function body]

[SELECT 300
FROM user_jobs
WHERE log_user = 'APEX_PUSLIC_USER'
AND what LIKE 'BEGIN reorg.PROCESS_CONFIRMED MATCHESS'
AND failures IS NULL;

Post Calculation Computation

Figure 6 – Show Hide Region Template

Figure 6 highlights the template changes for the Sticky Show-then-Hide region. The key differences between Show-then-Hide and Hide-then-Show are the initial use of the minus.gif image and the initial display style (on). The $r_ToggleAndSave JavaScript function toggles the region on and off, and saves the setting to session state. Too simple!.

The point of the Sticky Show-then-Hide example is to demonstrate how simple it is to effect what you need by:

· Reviewing the implementation of features similar to the desire functionality

· Alter an existing region template to create a new one that meets your requirements.

· Alter existing JavaScript to meet your needs.

· Reuse existing code packages – economize!

As I said, too simple. However, this example leads one through PL/SQL, JavaScript and APEX template modifications. There is great power in the ability to customize page, region and item templates, and to incorporate JavaScript and PLS/SQL to control the user interface. APEX developers should be comfortable in all of these areas, separately and combined, to produce required effects and functionality.
Dynamic Modified Progress Bar

There are many uses for a simple progress bar that tells the user the application is “Working …” or “Uploading …” or otherwise doing something. Users get impatient without such notice from the machine that tells them something is happening. There are almost as many readily available code samples that demonstrate how to add a progress bar to your code. The trick is to adapt one of those code samples to do exactly what is required in your application.
[image: image7.png]Conditions.

Conditon Type
[ots GO ey s o et crerom) |
[PUSQL] [tem=value] [tem notnul] [request=e1] [page in] [page notin] [exists] [none] [never]

Expression 1

SELEcT 306
FRou usex| obs

VAERE 1og user = 'APEX_PUBLIC USER'
AND what LIXE 'BEGIN reorg.PROCESS_CONFIRMED MATCHESS'
AND faslures s mull

Expression 2

Figure 7 – Dynamic Progress Bar
The key desire in this example was to have a progress bar that displayed a message describing the process actually executing, as illustrated in Figure 7. While this could have been accomplished by using multiple divisions and multiple JavaScript functions, one specific to each request, the compromise was to use the same division and modified JavaScript functions to achieve the dynamic progress bar.

<script language="JavaScript" type="text/javascript">

<!--
function html_Submit_Progress(pThis){

if(pThis.nodeName=='INPUT'){pThis.value='...Loading...'}

 else{pThis.innerHTML='...Loading...'};

html_ShowElement('AjaxLoading');

window.setTimeout('$x("wait").src = $x("wait").src', 100);

doSubmit('APPLY_CHANGES');

}

//-->

</script>

Listing 2 – Original html_Submit_Progress JavaScript Function

[image: image8.png]Definition

Template

[eable cTass"eisformRegion” cellpadding="0" cellspacing=ro" border="07 summry="" a="FREGION IDF">
l<theaa Flass="ci3Regionteaderns

DS

[con class=ncisRegionTicienssTITLES<ing 3sc=1/i/chenes/chens_15/minus.gitn

lonclick=nsr ToggleAndsave (this,'#REGION ID$')" id="$REGION ID}img

b e e e (S

o

cias

"t13RegionButtons">$CLOSES anbsp; £nbsp; $PREVIOUS $NEXT# anbsp; $DELETES $EDIT#$CHANGE S § CREATE $CREAT]

[</ex>
|</zneag>

'#REGION_ID#body" style="display

©13RegionBody">$B0DYE</Td>

|</zpody>
|</zab1e>

K1} |

A look under the covers of Carl Backstrom’s progress bar example (see http://apex.oracle.com/pls/otn/f?p=11933:69 and this thread in the APEX forum: http://forums.oracle.com/forums/thread.jspa?threadID=347397&start=0&tstart=0) reveals that the progress bar images appears as the result of a JavaScript function triggered by a button that submits the page. The JavaScript enables (makes visible) the processing image (it could be any image) in an HTML division at the location on the page specified by the division style. The image remains visible for the duration of the after-submit processing, The original html_Submit_Progress function is displayed in Listing 2.

Figure 8 – HTML <div> and <style> tags in Page Footer for Dynamic Progress Bar

Two new elements were created: a page item to hold the dynamic progress bar message, and an application process that that sets the item value based on the current request, The hard-coded progress message in the progress bar division tag was replaced with a substitution reference to the page item. The division style tag was modified to adjust the location of the progress bar image on the page. Figure 8 illustrates these changes.The HTML division and style tags that must be placed in the page header or footer text.

<script language="JavaScript" type="text/javascript">

<!--

function html_Submit_ExecPM(pThis){

if(pThis.nodeName=='INPUT'){pThis.value='...Matching Participants...'}

 else{pThis.innerHTML='...Matching Participants...'};

html_ShowElement('AjaxLoading');

window.setTimeout('$x("wait").src = $x("wait").src', 100);

doSubmit('EXECUTE_PM');

}

//-->

<!--

function html_Submit_PreloadReorgTbl(pThis){

if(pThis.nodeName=='INPUT'){pThis.value='...Preloading Tables...'}

 else{pThis.innerHTML='...Preloading Tables...'};

html_ShowElement('AjaxLoading');

window.setTimeout('$x("wait").src = $x("wait").src', 100);

doSubmit('PRELOAD_REORG_TBL');

}

//-->

…

…

</script>

Listing 3 – Customized JavaScript Function for Invoking Progress Bar

The message displayed on the button during processing and the actual request submitted were modified in JavaScript functions, one per request. Listing 3 shows the JavaScript functions which are placed in the HTML header. These could also have been included in a JavaScript source file.
[image: image9.png]Step 4: Process Confirmed Matches &

JOB FAILURE: The last Process Confirmed job failed. Check the Errors table for details.

Step 4: Process Matches.

Use the Process Confirmed Matches button to process all Confirmed matches from Step 3.

Ifthere is 3 Pending Batch Job #, a batch Process Confirmed Matches run is already scheduled for midnight tonight.
Itis not necessary (and not possible) to submit another batch job - all matches confirmed between now and the start
ofthe job will be processed.

Use the Process Confirmed Matches button to process all confirmed matches.

The buttons that trigger the requests that trigger our processes were modified to execute the JavaScript that invokes the corresponding progress bar-request, as in Figure 9.

Figure 9 – Button Target URL, JavaScript call

The next step in refining this solution would be to parameterize the button label and the request values, reducing the solution to an elegant one division and one JavaScript function. I leave this for the reader, as at this point “working, semi-elegant and on schedule” was sufficient.

The point of the Dynamic Progress Bar example is to demonstrate that reuse of existing components – in this case someone else’s JavaScript and an existing image – enables one to produce the desired results more quickly than starting from scratch. It also flexed our JavaScript skills a bit more than if we had adopted the default solution. These simple modifications are only examples of what is possible with a little effort and creativity. The image, messages and JavaScript involved may be as simple or complex as necessary to meet your requirements.
Batch Jobs

Long-running processes that do not need to complete for a user to continue in an application can be submitted as batch processes. To submit a process as a batch job, the solution is again simple – use the tools you know to create an APEX process that submits the job. One can use the APEX_PLSQL_JOB package, an APEX utility which is a wrapper to the DBMS_JOB package, or call DBMS_JOB, or DBMS_SCHEDULER directly. No magic here at all. The only caveat is to remember that the batch job is a separate session, so session state is not readily available. Any values needed in the batch process must be stored in a table then read from the database or otherwise explicitly passed to the batch process.

To facilitate monitoring a batch process from an APEX application, one can optionally employ a conditional page item to display the job number and status, as in Figures 10 and 11. The result is that the user sees at a glance whether a job was submitted or not, if it is running, and if there have been any failures. The job failure message can be styled to be as innocuous or glaring as necessary to catch your users’ attention.

[image: image10.png]Template Definition

Use substitution stings: (¥LINK#, #TEXT#, #TEXT_ESC_SC#, #IMAGE_PREFIX#, #IMAGE#, #IMAGE_ATTR#, #A01%..#A10%)
List Template Current

[caiv clas:

‘dntmllienulcen><a href="SLINKE"™

STMAGE_PREFIXStnemes/generic nochild gif" widhen22" helght="7S" /><a hre
EFESh—————e

—
List Template Current with Sub List ltems
lonc1ick=rapp_AppMenulultiOpenSottom(this, '$LIST_ITEM ID$',false)" /><a href-v"iLINKi"

Figure 10 – Job Number Display

[image: image11.png]Participant Match Home Page.

by A2: -

Match Administration Review & Confirm Matches Reorganized Participants Source Participants

Figure 11 – Job Failure Notice

Under the covers, the code to submit a batch job can be a simple or elaborate as need be. For example, the code in Listing 4 checks if there are more than 25 records to process. If so, the job is submitted batch to run at midnight. This example uses DBMS_JOB for a one-time execution. We could just as well have used DBMS_SCHEDULER or the APEX_PLSQL_JOB package.

DECLARE

 v_job NUMBER(12);

 v_matches_to_process NUMBER(8);

BEGIN

 -- check size of the run

 -- if fewer than 25 matches, force the job to a batch run

 SELECT count(*)

 INTO v_matches_to_process

 FROM ppt_match

 WHERE confirm = 'Y'

 AND processed = 'N';

 IF v_matches_to_process < 25 THEN

 REORG.PROCESS_CONFIRMED_MATCHES;

 ELSE

 -- submit the job to run tonight at midnight

 DBMS_JOB.submit (v_job,

 what => 'BEGIN reorg.PROCESS_CONFIRMED_MATCHES; END;',

 next_date => TRUNC(SYSDATE+1, 'DD') --- midnight tonight

);

 :P41_JOBNUM2 := v_job;

 END IF;

EXCEPTION

 WHEN OTHERS THEN

 :P41_STATUS := DBMS_UTILITY.FORMAT_ERROR_BACKTRACE;

 RAISE_APPLICATION_ERROR(-20001,'Unexpected error submitting batch job: '||:P41_STATUS);

END;

Listing 4 – Process to Submit Batch Job

[image: image12.png]All participants matched by Name, Ident (score 90) ~ Click on a column heading to sort by that column.
Click on the Display UNConfirmed Matches button to view only UNConfirmed matches.
seacnfROUS owiaf5 7] 6o | _Reset | _Display Unconimed watches oy | _Gonfim Selected Watoh Sets | _UNGonfim Selected wath Sets |
T TE]
L B e
Qre, ORACLE T oumrsen ZE B e
B 2
s
o e
Bor v BT comsem 2 S5 e o doonw O s s
USER DENVER, g e Oiame, ORACLE [HEE ozewRissst7t ST T 17.FEB49
GROUP 0832132 ient) USER =
s
o
. m B
Qe OMCLE Dr comsern B ST g
Be 2 5
-
row(s) 1-1of 1

[image: image13.png]Step 1: Prepare Match Structures (Consolidated Participants View) =

Step 1: Prepare Match Structures
*) Create a consolidated, slighty-cleansed view of al existing participants (PARN(PANTS table) to faciitate matching.
© B)Pre-load all intermediate REORG tables with the incoming data, to faciitate procBgng matches.

These steps have already been performed.

‘Some of these buttons are disabled because these steps will not be needed until the next inco

Crete Initial Hzster Participants View | _Preload Reorg Tables (Batch) | _Preload

Step 2: Match Participants - (Match Process Already Executed) &

Step 2: Execute Pariicipant Match process
‘The Participant Match Process has already been executed.

Viewthe Match Results Overview region for a summary of match counts and types
Click on the + to open the region

Next Steps:

» Step 3: Review & Confirm Matches, to review the automated match res|
 Step 4: Process Matches to merge the participant records and all their

Use the Review & Confirm Matches tab to review and confirm matches,

Figure 12 – Source and Condition for Job Number Item

The item that holds the job number is set to conditionally display, on the condition that a job of this type exists in the job query. Note the use of font color – pure HTML settings – to make the fact that the job exists stand out. One may wish to conditionally remove or disable the button that launches the batch job, for additional reassurance that the user will not start multiple runs of the same job. Of course, that same check could be done at the beginning of the process, and the process adjusted to not submit a job if one of the same procedure call and user already exists.

The point of this example is to underline that APEX processes are just PL/SQL (or web services). Anything can be included. One is not limited to what the APEX API’s provide. Our toolbox is large: anything possible in SQL, PL/SQL, HTML and web services can be incorporated in an APEX interface.

Some Common Challenges

Not all APEX constructs are obvious and straightforward to implement or troubleshoot. In the course of APEX development is not unusual to encounter a situation or two that causes some head scratching. Two specific cases, initial use of the DHTML List(Image) with Sublist element, and the Multi-Row-Update error are discussed below.
DHTML List Menus

Use of the DHTML List (Image) with Sublist list item type can cause some initial confusion. The list interface allows one to enter images, but the images never show up on the page. All the syntax looks correct, but no visible image. Just an empty list menu, as in Figure 13. And no error message!

[image: image14.png]Optional URL Redirect

Targetis a[URL - |

Page| (I reset pagination for this page)
Request|
Clear Cache (comma separated page numbers)

SetThesetems [< (comma separated namelist)
with These Values [(comma separated value lst)

URL Target
Savascripr:ntml_Submic_ExecPM(this);

Figure 13 – DHTM List (Image) with Sublist – Default Template – Blank!

[image: image15.png]&ra000.sal
@riosnsd
@risssea
@0
@
@0
@i
@risoosa
@rossosa
rimosd

To find the answer, I dug under the covers. View Source revealed that my image, by name, was not there. The next step, a search of the APEX Forum, quickly located the problem.

Figure 14 – Default DHTML List (Image) with Sublist Images

The answer lies in the fact that the DHTML List (Image) with Sublist default template is hard-coded with a generic image. Three generic images, in fact, as displayed in Figure 14. The hard-coded main image is intentional, to prevent page errors due to a missing image.
 Since generic_list.gif is hard-coded, any image or image attributes entered would have no effect – the template does not accommodate custom images, even though the list interface allows one to enter them.

To get the DHTML List (Image) with Sublist list type working with custom images, one must edit the list template to reference the entered images using the #IMAGE# substitution string instead of the generic_list.gif blank menu image:

The edit is to change the hard-coded reference to

… …

to

… …

[image: image16.png]Step 4: Process Confirmed Matches &
Pending or Executing Batch Process Job # 444

Step 4: Process Matches.
Use the Process Confirmed Matches button to process all Confirmed matches from Step 3.

Ifthere is 3 Pending Batch Job #, a batch Process Confirmed Matches run is already scheduled for midnight tonight.

Itis not necessary (and not possible) to submit another batch job - all matches confirmed between now and the start
ofthe job will be processed.

Figure 15 – DHTML List (Image) Template Definition – Edits for Custom Image

[image: image17.png]Fie Edt View Hstory Bookmarks Tools Help

o'

COLLABORATEO08

Technology a7 Applications Foren for the Oraele Comemunty

/ Home |/ Match Admini Processes |/ Review & Confirm Matches |/ Reorganized Participa

Home > Participants

Retur o Home | _Retum o atch Admin Processes | _ Review & Gonfim atches | View Reoroarized Patipars |

See the instructions within each region for more information on the items and buttons in that region.
Most regions may be displayed or hidden by clicking on the + or - button to the right of the region ite

ALL Participants

Please enter search criteria in the Search feld, then hit ENTER or dlick the Go button
Use the Reset button to clear a previous entr.

Search Display[15 7] _Go | _Resst

Please enter search criteia in the Search field, then hit ENTER or cick the Go by

User is advised to enter
Search criteria

i to view participants.

‘The reportwill not exectte unless a value is entered in the Search fisld.

The edited List template will look like Figure 15. Remember to edit both the Current and the Current with Sub List Items portions of the template definition so the custom images show up in both places. Of course, one can use any series of images here to diverge from the standard rectangular images and sizes and still use the same onclick JavaScript function. And, of course one can change the onclick function, too!

Figure 16 – DHMTL List (Image) with Sublist – Edited Template, custom images

Once the template is edited, the list displays as it should, with the specified images displayed, as in Figure 16.

The point of this example is to reinforce that we are working in a multi-layered interface, so we must always keep in mind that edits – and errors – can occur in any or all of these layers. The presented HTML page is the product of PL/SQL code that reads from the APEX repository and generates HTML using a series of templates, style sheets and JavaScript along the way. The “problem” may be in any of these areas. Though we can usually narrow it down to the likely culprit, sometimes the issue is hidden further under the covers than expected.

MRU Error

Many APEX developers who have built and edited Master-Detail forms or multi-row-update processes have encountered the following MRU error at some point in their APEX careers:

Error in mru internal routine: ORA-20001: no data found in tabular form

This error indicates that one or more of the conditions that APEX relies on to execute the multi-row-update process does not exist (or no longer exists).

To troubleshoot the situation, check for these conditions:

· The table name and primary key column settings are correct

· The primary key column(s) must be a column that is posted back with the form – that is, it must be Hidden or Display Only – saves state, or editable (not recommended for the primary key!).

The solution to recover from this error is to set these settings back to their original settings. This sounds simple, but the exact change to make is not always obvious.

I usually introduce this error by making a change to my report that changes the state of the primary key item, such as making the primary key item an Edit link. The fix in this case is to add another column to my query, primary_key_display, and use that column for my Edit link, restoring the primary column to its original state.

If that does not work, consider rebuilding the multi-row-update process. I have found in most cases when the basic conditions appear to be correct and the MRU error persists, it is faster to rebuild than to continue troubleshooting only to have to rebuild a few hours later.
The best practice to emphasize here is to save work often. I export periodically – and definitely at the end of each working day – to ensure that IF I lose work, I only lose a little. Rebuilding a sizeable page once is enough to reinforce this APEX best practice.

Best Practices

A brief summary of simple best practices is a fitting conclusion to this collection of behind-the-scenes APEX code examples . These best practice tips are so important they should be habit for every APEX developer.
Export early, Export Often.

Application export is the simplest form of APEX insurance. It is a simple, quick, local, easily recoverable backup of your work. Take an export before you start major alternations of a complex page. Take an export at the close of each day. Having an export that goes unused is always better than having to rebuild from scratch or otherwise spend time recovering lost or destroyed work.

Apply Changes

APEX is repository-based. One must Apply Changes each time one makes a change in an APEX page to save those changes to the repository. It is easy to be in a hurry and forget to Apply Changes, or to be impatient and not wait for the Apply to complete before running the page. Apply Changes is essential, and quickly becomes a habit.

Know the f?p Syntax

This is not so much a best practice as a time-saver. All APEX pages are generated by the “f” procedure, which has a single parameter “p”. “P” is a string of nine arguments, separated by a colon. The f?p syntax is a map for construction of an APEX page, letting the procedure know which application, page number, session, debug flags, cache setting, item names and values to use in construction of the page. The f?p syntax can be used as a URL to specify an APEX page.

I use the silly phrase

 All Programmers Smartly Request Double Cache In Virtual Programs

To remember the order of the APEX f?p arguments:

Application : Page: Session : Request : Debug : Clear Cache : Item Names: Item Values: Printer Friendly
Knowing this syntax by heart saves time when building URL constructs as targets. Remember, the f?p syntax is simply a function call that returns an HTML page, and as an HTML page, that syntax can be used anywhere a URL is appropriate.

Modularize - Use Packages

As with other web development tools, place your business logic in packages or web services. Doing so makes it easier to debug your logic, easier to reuse code modules and makes APEX process creation simpler.

Test in Different Browsers

Develop in the browser you like, but test at least in Internet Explorer (IE), versions 6 and 7, in Firefox and in any other major browser your users are likely to use. Be aware of the major browser settings of each, and be sure to inform users of required settings for your application. Better yet, avoid features that require specific settings. For example, in IE there is a “Play animations in web pages” Multimedia setting in the Internet Options settings. Un-checking this setting disables web page animations such as the Dynamic Progress bar.
Have Fun

Happy developers are more productive developers. I know I do best when I engaged in just enough clever, interesting work to keep the creative part of my brain busy while the productive part is cranking away, producing work on schedule. With APEX there are many layers over which a developer has control, and thus many avenues for creativity and expansion of skills. Somehow the productive part works faster when the creative part is engaged as well.
Summary

In all of the above examples, there is nothing new, just slightly different application of existing constructs, code snippets and concepts. Once seeing an interesting feature demonstrated, a quick look under the covers gives insight into how the feature was coded, and insight to how similar concepts can be reapplied and expanded to suit. It’s all a bit of scrappy application of the collective knowledge at hand.

APEX development is multi-layered in that is requires developers to know a bit about all of the components – SQL, PL/SQL, HTML, CSS, JavaScript, web services and more. Short of being an expert in all of these technologies, the trick is to observe and leverage the best creations of others to expand our skills and improve upon our own. To do that means going under the covers to study the best implementations of others and then adapt relevant techniques to improve our code, and eventually pass those improvements on for others.

About the Author

Karen Cannell is a Principal with Integra Technology Consulting and editor of the ODTUG Technical Journal. She has analyzed, designed developed, converted, enhanced and otherwise tweaked database applications for over 22 years, focused on Oracle since 1994. Recent focus includes design and development of ETL processes, Application Express, Oracle Business Intelligence and migration of legacy apps to web technologies, leveraging the Oracle 10g/11g suite of tools. She can be reached at kcannell@integratc.com.
References

Online APEX Resources

The APEX OTN Forum - http://forums.oracle.com/forums/forum.jspa?forumID=137 . The APEX user community is active and growing. It is your best source of APEX how-to’s and answers for users of all abilities. Know it, Bookmark it. Use it. Contribute!

The APEX Studio - http://htmldb.oracle.com/pls/otn/f?p=18326:1:3795991895340045::NO::: As with JavaScript, there are a growing number of APEX applications out there that are free to download and use as is or modify for your own application. This is the Oracle-hosted APEX hosting site. It includes applications, utilities, themes, tips and tricks.

The APEX OTN Technology Center – http://www.oracle.com/technology/products/database/application_express/index.html The Oracle Technology Network Application Express home page.

The APEXLib Oracle APEX Framework Project - http://apexlib.sourceforge.net/ An open APEX application development project that offers functionality the APEX currently does not include (though may be in future releases).

Oracle MetaLink - APEX is a fully supported Oracle product, part of the 10g database and higher. As such, support through Metalink is possible.
Specific References used in this article

Carl Backstrom’s progress bar example (see http://apex.oracle.com/pls/otn/f?p=11933:69 and this thread in the APEX forum: http://forums.oracle.com/forums/thread.jspa?threadID=347397&start=0&tstart=0)

Sticky Hide and Show APEX Packaged Application – Available on the OTN APEX Home page as a packaged application: http://www.oracle.com/technology/products/database/application_express/packaged_apps/packaged_apps.html#STICKY

Textbooks

Oracle HTMLDB Handbook, Develop and Deploy Fast, Secure Web Applications, by Bradley Brown and Lawrence Linnemeyer. , McGraw Hill/Oracle Press, 2006, $49.99, 486 pages.

Easy Oracle HTML-DB, Create Dynamic Web Pages with Oracle, by Michael Cunningham and Kent Crotty, Rampant Press, 2006, $39.95, 400 pages.

Pro Application Express, by John Scott, APress, To be published soon in 2008.

Appendix A – Installing APEX Source for Code Review only

The core APEX applications are themselves exported APEX applications that can be imported into your APEX environment for inspection. While these imported APEX core applications cannot be executed because of the security structure they are extremely valuable as learning tools.

To examine the APEX code, import the APEX application into an APEX workspace, and examine it as you would any other APEX application. The APEX f?p syntax gives the application and page number of the current page, so it is easy to locate the application number to import and the page within that application to inspect.

Import and install the APEX applications into a separate workspace, created just for this purpose, to segregate the APEX code from your code.
To import an APEX core application for inspection:

1. Create a new workspace, APEX_APPS, for example, to hold the APEX core applications. You will need close to 200MB for this workspace to import all the core applications, so you may want to create the user and default tablespace first from outside of APEX. Create a new APEX Developer user with access to the APEX_APPS workspace.

2. [image: image18.png]e

COLLABORATEO08

Technology a7 Applications Foren for the Oraele Comemunty

All Source Participants

Initial Run Admin Processes _Waich Admin
Home > INITIAL RUN - Administration

Admin

Participant Match Processes -
Help & Hints.

Match Administrative Processes

page to perform global partcipant

‘match and processing steps.

Refur o Home | _Revew & Conim lches | | View Source Patcpants | | View Reorganized Paticparis |

See the instructions within each region for more information on the items and buttons in {a

Most regions may be displayed or hidden by clicking on the + or - button to the right of The general process flow s

1. Prepare Match Structures by
creating the consolidated

‘Button and Progress Bar display
same message depending on

Step 1: Prepare Match Structures (Consolidated Participants View) REQUEST participants view and
rctosans i esgsnzaton
s
Step 2: Match Participants (Execute Match Process) & 2. Execute the Participant Match
Process b ciing e
‘Step 2: Execute the Participant Match process. "Run Match Process button.
e s macess s
‘The Participant Match process matches existing ACCSP PARTICIER#fS records accordin already been run, the Clear
These match criteria, and the “scores” of match quality associg them, can be revi Matching Participants. Existing Matches batton wil
I e e Tpes 5o s Rosew &Gt 0E0o0 S
o e anaconm
ik onth EecuetchProcessbuton o e pariciant e rcess Reow ot
‘The process will take a few moments to exeefife. Please be patient 2‘,’:‘:“;:’ indhidually, in sets,
‘When the process completes, the R tch Process button will be disabled and a Clear Existing Matches button will appear.
‘One must Clear Existing or to re-executing the Match Process. 4. Process Confirmed Matches.
Trorosars consolases
(] o emimeq ot s
S Child participants are merged

with the parent, and all child
licenses are now attibuted to
the parent participant, Thus
data for the matched set of
No Match Data Found - The Match Process has not yet been executed. participants is consolidated

‘under one participant, the
.

Match Results Overview =

Determine the application number for the feature you are interested in. Look in the URL. Recall from the f?p syntax section that the application number is the first number in the parameter sequence, followed by the page number.

APEX Core Applications

3. Go to the file system APEX installation directory, in the /builder directory. The series of nine f4nnn.sql files in this directory are the APEX core applications.
4. Log in as the APEX user with access to the APEX_APPS workspace. Import the f4000.sql (or f4050.sql, etc.) application into the workspace, using the Import Application wizard:

· Click on the Import Application button.

· On the Import page:

· Select the application file to Import: C:\<apex_install_home>\builder\f4000.sql

· File Type: Application Page or Component Export

· File Character Set: Leave the default

· Click Next.

· Click the Install button.

· On the Install Application page:

· Parse As Schema: APEX_APPS (use the name of your new workspace)

· Build Status: Run and Build Application

· Install As Application: Change Application ID (VERY IMPORTANT. Be sure to change the application id, since you do not want to overwrite the real application!
· New Application: 400 (or use your own numbering scheme for the imported APEX core applications)

· Click the Install Application button.

· On the Application Installed page, click on the Edit Application Attributes link.

· On the Application Attributes page:

· For the Name, add the number of the file loaded to the front of the name, or use some other convention to clearly identify the APEX application code. For example: 4000-APEX Application Builder

· Application Alias: CLEAR THIS FIELD so it is NULL. (VERY IMPORTANT, you don’t want to interfere with the operating core application with the same alias.
· Click Apply Changes.

5. View the APEX application. Recall the page number you are interested in, identified by the second argument in the f?p parameter sequence. Go to that page and view how the APEX developers achieved the feature that caught your eye. In most cases, looking at the example gives enough clues to employ the same tactics in your own application.

16

Paper # 462

