Database / Architecture

What can data guard broker do for you?
Kenney Snell, UPS

Data Guard Broker Abstract
Data Guard Broker is a configuration management, tracking / monitoring, and operational tool to manage your Data Guard primary and alternate site database solution. By storing each database instance into the Broker configuration file, the entire primary, physical and logical standby databases are viewed and managed as a single database unit.

The broker configuration has a heartbeat mechanism that is constantly checking to see if communication and log movement is taking place between all databases within the configuration. This monitoring and tracking mechanism also provides a heath check to ensure that switchover or fail over operations are possible.

A single command for switchover or fail over operations provides an easier method to switch the database role to the alternate site. One can issue the commands by connecting to any of the databases in the broker configuration.

The Broker configuration allows one to use OMS Grid control to monitor the entire configuration.
Introduction to Data Guard

Oracle’s Data Guard is a cost effective and reliable solution to quickly failover the primary database to an alternate site. Data Guard provides an effective mechanism to send the redo logs or change information from the primary database to an alternate site(s) and apply the redo to a standby database(s).
Up to 9 standby databases can be included in the Data Guard configuration. All 10 of the databases including the primary, function as a single database unit. The standby databases are either physical or logical databases. The physical is an exact copy, block for block, of the original primary. The physical database is in a recovery state, mounted but not opened. The redo is continually applied to ensure that this database is up to date with the primary. The logical database is a subset of the primary. The logical could be a duplicate, but it may consist of on one or more schemas and their tables or only a few tables that are kept in sync with the primary. The method of keeping the logical standby up to date with the primary is called SQL apply. Oracle uses Log Miner technology to reconstruct the SQL to apply it on the logical standby.

In Data Guard, after a database failover operation of a primary, the database roles are reversed – the primary database becomes a standby and the standby becomes a primary. After re-connecting the application to the new primary, at an alternate site, the business application(s) resumes.
Refer to [1] for building a physical standby database or building a logical standby database.
Data Guard Failover Operations

There are 3 databases (1 primary database A at New York City, 2 standby physical databases: Database B at Site Chicago and Database C at Site Denver). The application is connected to the Primary Site at New York City. See Figure 1 below.

Figure 1: Before DG Database Failover (Site A)

[image: image1.emf]Primary

Database

A (P900)

Standby

Database

B (P900b)

Standby

Database

C (P900c)

Primary Site A

(New York City)

Alternate Site

B (Chicago)

Alternate Site

C (Denver)

REDO

Application

Clients

After the database failover, see Figure 2 below. Database C had its role changed to primary. Database A had its role changed to Standby. The direction of the redo shipping changed. The application either moved to run at Denver or stayed at New York; but the application connects to the new primary at Denver.
Figure 2: After Database Failover to Site C

[image: image2.emf]Standby

Database

A (P900)

Standby

Database

B (P900b)

Primary

Database

C (P900c)

Primary Site A

(New York City)

Alternate Site

B (Chicago)

Alternate Site

C (Denver)

REDO

Application

Clients

Introduction to Data Guard (DG) Broker

What is DG Broker?
Broker is a configuration management tool that combines all your loosely coupled databases that participate in a failover database operation into a centrally managed database unit. All the information that is required to manage these databases is stored in Broker Configuration Files (one for each database). Broker’s main job is to ensure that all the required information is consistent between all these databases. Some of the required information kept in the configuration is:

· List of databases and their names,
· Location and server names for the databases,
· Connect identifiers to reach each database, and
· Other Broker Properties.
Broker is constantly communicating with each database at each location to ensure that all the databases are functioning properly. A heart beat mechanism is constantly pinging all sites and a Health Check report is running to ensure consistency in the Broker configuration files and the databases. Broker is checking for errors or problems within the configuration for all databases. Broker is monitoring the database to ensure that archived logs are being sent to the destination sites and applied to the standby databases. Broker is performing these checks so that all databases will be ready to failover or change roles, in the event of a planned Business Continuity Plan (BCP) exercise or a real disaster.

Last, Broker provides an easy method to perform database failover operations. For example, the command to perform a planned database switch from a primary database to a standby database is:

 DGMGRL> SWITCHOVER TO <Database_Site>;

DGMGRL is the command line processor and will be discussed later.

Oracle (Broker) executes the SQL commands, stops and starts the databases, changes the database roles, and reverses the direction of the redo shipping. The Broker also prevents you from switching to the current primary. You must switch to an active standby database.

The command to perform an unplanned failover to an alternate site and bring up a new primary database is:

DGMGRL> FAILOVER TO <Database_Site>;

The failover command is used in the case of a real disaster. The current standby becomes the new primary and the existing primary is lost. The failover command can also be tested during a BCP exercise. In 10g the old primary database can be recovered or re-instated using a Broker REINSTATE command. The DG Broker REINSTATE command is discussed later.

In summary, Broker manages all databases that participate in a Data Guard database failover operation and maintains the information in a Broker Configuration file. Broker enforces consistency between database parameters and Broker properties for the entire databases contained in the Broker configuration. Broker is constantly checking the configuration to ensure that when needed, a database failover operation will be successful. Finally, Broker has simple commands to quickly perform database failover operations.

What Does DG Broker Do?
The Broker has three main functions. They are:

1. Manage, create and update Broker configurations

2. Monitor all the databases within the Broker configurations

3. Provide easy one step commands for database switchover, failover and reinstate database operations
Managing Broker

Command Line Processor (DGMGRL)
Data Guard Broker has a command line processor called DGMGRL to easily perform switchover or failover database operations. It is entered from a server prompt by entering the command:

Linux> dgmgrl

In order to create or manage a Broker configuration, one first logs into to the primary database with an account with SYSDBA privilege. DGMGRL is used to perform the following operations.

1. Create a Broker Configuration;
2. Enable a Broker Configuration (send the configuration to all databases contained in the Broker Configuration);
3. Check Status of the Configuration;
4. Diagnose and find errors in the configuration using the “SHOW” command;
5. Correct errors in the configuration using the “EDIT” command;
6. Perform switchover and failover operations; and
7. Reinstate a database into the configuration after a failover operation.
DGMGRL is installed with the oracle Enterprise Server Edition and no additional install or license is required.

Oracle Enterprise Manager (OEM) / 10g Oracle Management Service (OMS) - Grid Control
You can either use DGMGRL or OMS to manage the Broker Configuration. In 10g Oracle renamed the centrally managed OEM product to OMS - Grid Control. One can use OMS to manage your entire databases in the grid and also use OMS to Manager Data Guard Broker. You must already have installed and configured the Broker. The same set up that was used in the Broker configuration is used again, (Sections 2 and 3 [2]). An additional step includes installing OMS Grid Control. See install Guides for OEM Grid Control [3, 4, 5]. The main difference between using Data Guard Broker with DGMGRL and using OMS is that in OMS you are using a GUI web interface to point and click to perform operations such as switchover and failover. In OMS the web page shows you the possible databases for failover. See Figure 3 below.

Figure 3: Oracle Enterprise Manager 10g – Grid Control

[image: image3.png]
OMS Grid Control provides a full compliment of features to manage your database and has pages such as Figure 3 to manage Data Guard. To perform a failover operation, do the following steps.

1. Login to OMS web page

2. Select Menu for Data Guard

3. Select Switchover or Failover

4. Select <Standby_ Database>

5. Continue (y)

What are the benefits and cons of using the Broker?

Benefits of Broker

1. Broker automates many of the manual tasks for Data Guard switchover and failover operations. It is easy using either DGMGRL or OMS to perform switching from one primary database to another.

2. In more complex environments where there are several locations for databases (3 or more) and where there are multiple databases at each location, Broker simplifies the management of switchover and failover operations.

3. With the use of Broker, one has central management and monitoring of the entire configuration.

4. Provides a constant heart-beat mechanism to communicate between all databases in the configuration. The output of this logging is sent to separate log (drc<sid>.log). You know immediately if there are any alerts within the configuration.
5. Broker ensures that current init parameters in the spfile and Broker properties are consistent across all databases within the configuration. It enforces these standards during switchover and failover operations. Broker protects your current environment by checking for errors. If errors are found Broker cancels the switchover or failover operations.

6. Broker provides all the checks to perform a Data Guard failover operation. The checks include
A. Warns if the current primary is still available;
B. Verifies that the Standby target is enabled; and
C. Waits for the target standby to finish applying logs before stopping Redo Apply.
7. If flashback is active, it provides all the steps to automatically re-instate the failed primary back into the DG configuration as a standby after a DG failover operation. This uses the Broker command reinstate <database>.
8. Broker is a requirement for using OMS and Broker is integrated into OMS. Additional DG Verify checking and time-based log and failover monitoring are included.
9. OMS also includes addition performance tools and graphs that help you monitor and tune redo generation, redo transport services and log apply services.
10. OMS provides a consistency and establishes a standard method of deploying DG across the entire database grid.

CONS of using Broker
1. In a small configuration of one primary and one Standby, Data Guard without Broker works, but the burden of managing the database lies with the user.

2. Broker changes initialization properties during startup or shutdown of the databases, based on the values of Broker properties.
3. If the Broker configuration is not equal to “SUCCESS”, Broker commands such as switchover and failover will not work until the configuration is fixed.

4. Additional objects and setups are required to use Broker. They include:
A. Broker Configuration files,
B. Must use spfile,
C. Some additional database parameters / Broker properties,
D. Extra entries in listener.ora, and
E. Additional user (DGADMIN).
Data Guard Broker Architecture

Broker Processes

Figure 4 shows the processes that make up a Data Guard Brokered database. Multiple user processes or applications connect to the primary database. The normal background database processes are present and a new one called DMON. The Data Guard Monitor process is the broker server-side component that is integrated with the Oracle database. Data Guard monitor is composed of the DMON process and broker configuration files that allow you to control the databases of that configuration, modify their behavior at runtime, monitor the overall health of the configuration, and provide notification of other operational characteristics. Note that the DMON process communicates with the standby and all databases that are contained in the Broker Configuration.

FIGURE 4: (Figure 1–4 Databases with Broker (DMON) Processes) Section 1 [2]

[image: image4.emf]
Data Guard Broker Components

The Oracle Data Guard Broker consists of the following components:

· Oracle Enterprise Manager (OMS Grid Control) or
· Data Guard Command-Line Interface (DGMGRL) and
· Data Guard Monitor
OMS or the Data Guard command-line interface (DGMGRL) are the Broker client interfaces that help you define and manage a configuration consisting of a collection of primary and standby databases. DGMGRL also includes commands to create an Observer, a process that facilitates fast-start failover. Fast-start failover allows the Broker to automatically fail over to a previously chosen, synchronized standby database in the event of loss of the primary database.

The Observer can be configured to perform an automatic switchover or failover database operation to an alternate site – no manual intervention. To learn how to set up, install or configure the Observer, which uses Fast-start failover, see Section 5.5 [2].

The Data Guard monitor is the Broker server-side component that is integrated with the Oracle database. The DMON process communicates between all sites contained in the configuration. The process provides a Health Check report and status of the entire configuration. The Health Check report is discussed later.
The Data Guard Log Apply Services updates standby databases with redo data that is transmitted automatically from the primary database by redo transport services. The archived redo log files and standby redo log files contain all of the database changes except for unrecoverable or unlogged changes. A best practice is to force logging on when Data Guard is installed. On physical standby databases, Redo Apply applies the redo data to stay transactionally consistent with the primary database. On logical standby databases, SQL Apply applies the redo data to stay transactionally consistent with the primary database.

The Broker’s Data Guard monitor (DMON) process configures and maintains the Broker configuration. The Broker configuration is a group of objects that you can manage and monitor. They act as a single unit. Thus, when you enter a command that affects multiple databases, the DMON process:
1. Carries out your request on the primary database,
2. Coordinates with the DMON process for each of the other databases,
3. Updates the configuration file on each local system, and
4. Communicates with the DMON process for each of the other databases to update their copies of the configuration file.
Through the DMON process, you can configure, monitor, and control the databases and the configuration together as a single unit. If you disable the configuration, broker management of all of the databases in the configuration is disabled. If you later enable the configuration, broker management is enabled for each database in the configuration. Disabling the Broker configuration does not stop log transfer or Log Apply services on the standby databases.
On the primary database, Figure 5 shows the redo transport services in addition to the following main components:
· Primary database,
· DMON,
· Online redo log files, and
· Archived redo log files.
Figure 5 also shows standby redo log files in dotted form on the primary side. The standby redo logs are dotted to indicate they are currently inactive but have been configured in preparation for a switchover to the standby role. One to nine standby databases can be included in the Broker configuration.
The standby database in Figure 5 shows the following components:
· Standby database,
· Log apply services,
· DMON,
· Archived redo log files, and
· Standby redo log files.
The online redo log files on the standby database are dotted to indicate they are currently inactive but have been configured in preparation for a switchover to the primary role.
Figure 5: (Figure 3–1 Oracle Data Guard Broker Configuration) Chapter 3 [2]

[image: image5.emf]Primary

database

Standby

database

Log

Transport

Services

Archived

Redo Logs

DMON

Oracle net

DMON

Standby

Redo Logs

Archived

Redo Logs

Primary Site

Broker

Configuration Files

Broker

Configuration Files

Log

Apply

Services

Archiver

OMS or

DGMGRL>

Real-time

Apply

Standby Site 1

Standby Site 2 ...

Standby Site 9

Standby

Redo Logs

Online Redo

Logs

Online Redo Logs

Setting up the Broker Configuration files

Two copies of the configuration file are maintained for each database to always have a record of the last known valid state of the configuration. When the broker is started for the first time, the configuration files are automatically created and named. The files are created using a default path name and filename that is operating-system specific. You can override this default path name and filename by setting the following initialization parameters in the database:

DG_BROKER_CONFIG_FILE1

DG_BROKER_CONFIG_FILE2
Note the following restrictions when setting the DG_BROKER_CONFIG_FILE1 and DG_BROKER_CONFIG_FILE2 initialization parameters:

The parameters must be set to the same value for each instance if this is a RAC database.

These parameters can only be set or changed when the Data Guard Broker is not running (DG_BROKER_START=FALSE).

These parameters must specify a raw device, ASM file, or cluster file system file that resolves to the same set of physical files for all RAC instances.
These datafiles can reside on raw devices, a file system or an ASM disk group for non-RAC instances.
Data Guard Broker works with databases that use either Oracle Managed Files (OMF) or user managed datafiles.
Managing Broker Configuration Files in an Linux / HP Service Guard Cluster Environment

Our company doesn’t use Real Application Clusters (RAC). Any comments in this paper on RAC are obtained from Oracle manuals and whitepapers, and not from experience. HP Service Guard is used as the clustering technique. Oracle refers to this clustering technique as Cold Failover. Service Guard, which is the cluster software, communicates with all nodes or servers within a cluster, See Figure 6. The active database only resides on one node (Server S1) at a time.
If a server failure occurs on the Primary site (New York City) within a cluster, the package which mounts the file system, connected to the Storage Architecture Network (SAN), where the database resides, is dismounted bringing down the database. Then the package is restarted on the surviving node (Server S2), which mounts the file system on the server and restarts the database. These actions occur automatically and without manual intervention.

A script called dg_config.ksh manages the Broker configuration during a server failure in the cluster. After the database is restarted, dg_config.ksh is automatically run and the script checks the status of the Broker configuration. If the status of the configuration is not “SUCCESS”, the script removes the configuration and rebuilds the configuration based on initial stored parameters. Finally the script checks the status of the configuration.

A similar server failure, within the local cluster could occur at either alternate site (Chicago, Denver). The automate failover to a surviving node within the cluster occurs the same as described at the Primary Site. In any case the Broker configuration is checked for a status of “SUCCESS”.

When using Data Guard Broker in a Real Application Cluster (RAC) environment, the dg_config.ksh script is not needed to manage local server failures. When a server failure occurs within RAC, the cluster software automatically maintains the Data Guard Broker configuration and no manual intervention or running a script is required. RAC and the DMON process will maintain the Broker configuration and keep its status as “SUCCESS”.

Figure 6: HP Service Guard (New York City)

[image: image6.emf]Primary

Database

A (P900)

Standby

Database

B (P900b)

Standby

Database

C (P900c)

Primary Site

A (New York

City)

Alternate Site B

(Chicago)

Alternate Site C

(Denver)

Server S1

Server S2

REDO

Broker

Configuration Files

OMS or

DGMGRL>

SAN

DG_BROKER CONFIG_FILE2

HP Service Guard

DMON

DG_BROKER CONFIG_FILE1

Managing Broker Configuration Files in a Real Application Clusters (RAC) Environment

If the Broker is managing a RAC database, the value of DG_BROKER_CONFIG_FILE1 and the value of DG_BROKER_CONFIG_FILE2 for each of the instances must point to the same set of physical files. In other words, all instances of the database must reference the same set of configuration files. The configuration files can be deployed using one of the following three methods (Cluster File System, ASM, or RAW). For information on deploying the configuration files on ASM, see Section 3-2 [2]. For information on deploying the configuration files on RAW devices, see Section 3-3 [2]. The Clustered File System is described next as it is used in the HP Service Guard method.
Cluster File System (CFS) for Configuration Files

In Figure 7 note that each RAC database or instance has its Broker Configuration files in the same location in the cluster file system (CFS). In this scenario, the parameters and value for all instances are:

DG_BROKER_CONFIG_FILE1=$ORACLE_BASE/admin/db_unique_name/dr1db_unique_name.dat

DG_BROKER_CONFIG_FILE2=$ORACLE_BASE/admin/db_unique_name/dr2db_unique_name.dat

Note that CFS is the method used in HP Service Guard. But these three methods are using RAC.
FIGURE 7: (Figure 3–2 Broker Configuration Setup in a CFS Area), Chapter 3 [2]

[image: image7.emf]
For additional information on RAC, see the following whitepaper “RAC and Broker, Data Guard Broker High Availability” [7]. This article focuses on how the Broker has been enhanced in Oracle Database 10g to integrate with Real Application Clusters (RAC) and ensure seamless high availability in the event of failures of one or more instances in a RAC standby.

Broker Properties
New Initialization Parameters and Broker / Database Properties

In 10g the Broker manages the Oracle Network (Ora-net) connections to the standby database based on three parameters. The broker constructs the connect descriptor to the standby apply instance and uses it as the value of the SERVICE attribute of the LOG_ARCHIVE_DEST_n initialization parameter. The redo transport services use these connections to transport the redo to the standby database and do not rely on any Oracle Net services naming method. The three parameters are:

· LOCAL_LISTENER - initialization parameter of the standby apply instance
· DB_UNIQUE_NAME - initialization parameter of the standby database
· INSTANCE_NAME - parameter of the standby apply instance from V$INSTANCE
In a non-RAC environment only the LOCAL_LISTENER and the DB_UNIQUE_NAME is needed to uniquely identify the connect destination. Don’t confuse DB_UNIQUE_NAME and DB_NAME. In all databases contained in a Data Guard configuration, DB_NAME is always the same. DB_UNIQUE_NAME is the unique instance name for each database

In a RAC environment, the DB_UNIQUE_NAME refers to cluster site name (ex. Chicago) and each instance of the database or node is the INSTANCE_NAME (Chacigo_N1, Chicago_N2). See example below.

TABLE 1: RAC Primary / Standby Instances Names

	RAC Primary
	RAC Standby

	Node 1 Instance
	Dallas_N1
	Node 1 Instance
	Chicago_N1

	Node 2 Instance
	Dallas_N2
	Node 2 Instance
	Chicago_N2

DG_BROKER_CONFIG_FILE1 and
 DG_BROKER_CONFIG_FILE2. – sets the current location of the two Broker configuration files.
DG_BROKER_START – Starts the DMON process when set to TRUE
To use DGMGRL, the following must be true:

The DG_BROKER_START dynamic initialization parameter is set to TRUE.

To enable broker operations that require restarting instances without manual intervention, Oracle Net Services must be configured on each of the hosts that contain the primary and standby database instances. Specifically, the listener.ora file must contain static configuration information about the instance. The GLOBAL_DBNAME attribute must be set to db_unique_name_DGMGRL.db_domain. See example below from linstener.ora.
From listener.ora file

…
SID_LIST_lsn_s006 =

 (SID_LIST =

 (SID_DESC =

 (GLOBAL_DBNAME = ora-s006.air.ups.com)

 (SID_NAME = s006)

 (ORACLE_HOME = /u001/app/oracle/product/10.2.0.2.0)

 (PRESPAWN_MAX = 10)

)

 (SID_DESC =

 (GLOBAL_DBNAME = dg_s006_DGMGRL.air.ups.com)

 (SID_NAME = s006)

 (ORACLE_HOME = /u001/app/oracle/product/10.2.0.2.0)

 (PRESPAWN_MAX = 10)

)

…
Data Guard Properties

The Data Guard Broker configuration is constructed by using commands in either DGMGRL or OMS to update Broker properties. However, some properties can only be updated through DGMGRL. Some of the properties are imported from the database initialization parameters and views and are loaded into the Broker properties when the DMON process starts up.

There are three types or scopes for the properties. They are

· Database scope - meaning the value you set for the property applies uniformly to each instance of the database.
· Instance scope - meaning, for a multiple-instance database environment, it is possible that the values of some particular properties may differ from one instance of the database to the next
· Configuration scope – meaning the value of the property is configuration wide, not instance or database specific
See Appendix A for a complete list of Broker Configurable Properties. The table in Appendix A shows the following:

· Scope of the property,
· What area or service the property pertains to,
· The role of the property,
· Whether the property is imported from either a database initialization parameter or a column from a view, and
· If the Broker property is imported, the database initialization parameter or a column from a view is listed.
Note if a Broker property is set, the value of the property overrides the database initialization parameter.

Common Data Guard Broker Properties used in the Broker Configuration
Below are steps to create the Broker configuration for Figure 8. The sample Broker configuration illustrates most common properties and syntax used to enter commands in DGMGRL.

Figure 8: P900 database (New York City, Chicago, and Denver)

[image: image8.emf]Primary

Database

A (P900)

Standby

Database

B (P900b)

Standby

Database

C (P900c)

Primary Site A

(New York City)

Alternate Site

B (Chicago)

Alternate Site

C (Denver)

REDO

1. Create the Primary Site “A” (New York City) database for the configuration.
A. DGMGRL> CREATE CONFIGURATION 'drcp900' AS PRIMARY DATABASE IS 'DG_P900’ CONNECT IDENTIFIER IS ora-p900.oracle.com;
B. DG_P900 is set by a parameter in init.ora (DB_UNIQUE_NAME)
C. Our standard is to name the database parameter as DG_<SID>; but it can be used as a Site Specific named parameter.

2. Create the Standby database for Alternate Site “B” (Chicago) for the configuration.
A. DGMGRL> ADD DATABASE ‘DG_P900b' AS CONNECT IDENTIFIER IS ora-p900b.oracle.com MAINTAINED AS PHYSICAL;

3. Create the Standby database for Alternate Site “C” (Denver) for the configuration.
A. DGMGRL> ADD DATABASE ‘DG_p900c' AS CONNECT IDENTIFIER IS ora-p900c.oracle.com MAINTAINED AS PHYSICAL;

4. Set up location for the Standby Archive logs for Primary Site New York
A. DGMGRL> EDIT INSTANCE p900 SET PROPERTY StandbyArchiveLocation = '/b001/oradata/p900/archlog_backup/';
B. Broker property StandbyArchiveLocation gives the location on the Standby database for where the archived logs are stored.
C. This property is set in the init.ora on the primary for the parameter LOG_ARCHIVE_DEST_n.
5. Set up location for the Standby Archive logs for Alternate Site Chicago
A. DGMGRL> EDIT INSTANCE p900b SET PROPERTY StandbyArchiveLocation = '/b001/oradata/p900b/archlog_backup/';

6. Set up location for the Standby Archive logs for Alternate Site Denver
A. DGMGRL> EDIT INSTANCE p900c SET PROPERTY StandbyArchiveLocation = '/b001/oradata/p900c/archlog_backup/';

7. Set up the Log transport Services method for the Standby Site New York
A. DGMGRL> EDIT DATABASE 'DG_P900' SET PROPERTY 'LogXptMode'='ASYNC';
B. Broker property LogXptMode gives the mode of transfer for the sending the archived logs from the primary to the standby.
C. This property is set in the init.ora on the primary for the parameter LOG_ARCHIVE_DEST_n.
8. Set up the Log transport Services method for the Standby Site Chicago
A. DGMGRL> EDIT DATABASE 'DG_P900b' SET PROPERTY 'LogXptMode'='ASYNC';

9. Set up the Log transport Services method for the Standby Site Denver
A. DGMGRL> EDIT DATABASE 'DG_P900c' SET PROPERTY 'LogXptMode'='ASYNC';

10. Set the Data Protection Mode to MaxAvailability for the Broker configuration.
A. DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxPerfomance;
B. There are three types of data protections for movement of the archived logs from the primary to the standby. The three protection modes are discussed in the next section.

11. Bring the Broker configuration online.
A. DGMGRL> Enable Configuration;
B. This command turns on the communication between all the databases and their Broker data files in the remote databases. If all the parameters and Broker properties are correct and agree with each other and if communications can be established to all members or databases within the configuration, the configuration is enabled

12. After enabling the Broker configuration, enter the following command to check the status of the configuration. If all is ok, the word “SUCCESS” is shown.

A. DGMGRL> Show Configuration;
Configuration

 Name: drcp900
 Enabled: YES

 Protection Mode: MaxPerformance
 Fast-Start Failover: DISABLED

 Databases:

 DG_P900 - Primary database
 DG_P900b - Physical standby database
 DG_P900c - Physical standby database

Current status for "drcp900":

SUCCESS

Data Protection Modes
The main reason businesses use Data Guard is to protect the company against loosing their data. The loss of company data could result in down time, loosing data that can’t be replaced, loss of customers, loss income, or loss of a competitive advantage over its competition.

Oracle Data Guard has three modes of data protection. The three modes from the highest protection level down to the least are listed below and in table 2. They are:
· Maximum Protection,
· Max Availability, and
· Max Performance.
Each of the three modes has four categories or attributes that distinguish each level. The four categories are

· Which Oracle process sends the Redo logs?
· What is the network transmission mode?
· Do we wait for the data or logs transmitted to the Standby location to finish writing to disk before returning to process the next unit of work?
· Is it a requirement to use Standby Redo logs?
Table 2: Minimum Requirements for Data Protection Modes

	
	Maximum Protection
	Maximum Availability
	Maximum Performance

	Redo archival process
	LGWR
	LGWR
	LGWR or ARCH

	Network transmission mode
	SYNC
	SYNC
	SYNC or ASYNC when using LGWR process. SYNC if using ARCH process

	Disk write option
	AFFIRM
	AFFIRM
	AFFIRM or NOAFFIRM

	Standby redo log required?
	Yes
	Yes
	No, but it is recommended

These attributes are configured with LOG_ARCHIVE_DEST_n parameter.
Maximum Protection

This is the highest level of data protection. A transaction will not commit until the redo needed to recover that transaction is written to the local online redo log and to at least one remote standby redo log. The primary database shut downs if a fault prevents it from writing its redo stream to a remote standby redo log. In other words the primary and the Standby will always be in sync.

This mode ensures that no data loss will occur if the primary database fails.

Maximum Availability Mode
This protection mode provides the next highest level of data protection that is possible without compromising the availability of the primary database. Like maximum protection mode, a transaction will not commit until the redo needed to recover that transaction is written to the local online redo log and to at least one remote standby redo log. Unlike maximum protection mode, the primary database does not shut down if a fault prevents it from writing its redo stream to a remote standby redo log. Instead, the primary database operates in maximum performance mode until the fault is corrected and all gaps in redo log files are resolved. When all gaps are resolved, the primary database automatically resumes operating in maximum availability mode. In this mode during the fault the data protection level is reduced from MaxAvailability to MaxPerformance.
This mode ensures that no data loss will occur if the primary database fails, but only if a second fault does not prevent a complete set of redo data from being sent from the primary database to at least one standby database.

Maximum Performance Mode

This protection mode (the default) provides the highest level of data protection that is possible without affecting the performance of the primary database. This is accomplished by allowing a transaction to commit as soon as the redo data needed to recover that transaction is written to the local online redo log. The primary database's redo data stream is also written to at least one standby database, but that redo stream is written asynchronously with respect to the commitment of the transactions that create the redo data.

When network links with sufficient bandwidth are used, this mode provides a level of data protection that approaches that of maximum availability mode with minimal impact on primary database performance.

The maximum performance mode enables you to either set the LGWR and ASYNC attributes, or set the ARCH attribute on the LOG_ARCHIVE_DEST_n parameter for the standby database destination.
If the primary database fails, you can reduce the amount of data that is not received on the standby destination by setting the LGWR and ASYNC attributes. For distances over 400 miles between sites, use LGWR, ASYNC, and NOAFFIRM with Standby Redo logs.

Also note we have successfully used LGWR, ASYNC, and NOAFFIRM with Standby Redo logs at distances over 800 miles. It’s important to use the Standby Redo Logs to allow Real-Time Apply to be used on the Standby database. This allows the committed units of work to continue to be sent from the primary to the standby as soon as they are ready. It also allows the redo to be applied immediately at the Standby and you don’t have to wait for a log switch to occur at the Standby.
Create Broker Configuration
To illustrate the steps to create a Broker configuration three locations (one primary and two alternates) are used. See Figure 9 for the current configuration and other possible switchover and failover scenarios. The primary database is located at the primary site (New Your City). Standby physical databases are located at alternate sites (Chicago and Denver). The Broker configuration can be created using OMS Grid Control, but the example use the Command Line Interface or DGMGRL.
In Figure 9, each site contains a Broker configuration set of files. Each DMON process located at each site talks to each other DMON process. In other words, the DMON at New York communicates with the DMON at Chicago and at Denver. This allows the Broker client (DGMGRL or OMS) to communicate and manage the configuration from any node in the configuration. By default the SYS account, which has SYSDBA privileges is used to manage the Broker configuration. A less privileged account, called DGADMIN was created to manage the Broker configuration and execute commands.

Figure 9: P900 database (New York City, Chicago, and Denver) using DG Broker

[image: image9.emf]Primary

Database

A (P900)

Standby

Database

B (P900b)

Standby

Database

C (P900c)

Primary Site A

(New York City)

Alternate Site

B (Chicago)

Alternate Site

C (Denver)

DMON

DMON

Broker

Configuration

 Files

DMON

Broker

Configuration Files

Broker

Configuration Files

OMS or

DGMGRL>

Construction of Broker Configuration

Five steps are required to install Data Guard Broker and the configuration files.

Step 1. Install Data Guard and use SQL Commands to successfully perform a switchover and switchback operation.

Step 2. Create a Broker Account in all databases in the configuration, ex. DGADMIN. This account is used to create and manage the Broker configuration. The account is used instead of using the ‘SYS’ account which is an Oracle privileged account. Additional privileges are granted to DGADMIN to work with OMS.

Step 3. Modify database initialization parameters and Broker properties for both the primary and standby databases.

Step 4. Create the Broker Configuration using the account DGADMIN and enable the Broker configuration.

Step 5. Add a SID descriptor in the listener.ora entries on each database. This allows Broker to stop and start the database during failover operations.

See Appendix B, Broker Creation Steps, for a complete example of installing Broker for Figure 9 (New York City, Chicago, and Denver).
Operational Broker Commands
SWITCHOVER
The most used command in Broker is the switchover. This is a graceful planned change of database roles. This is typically done for planned maintenance of the primary system or as part of an exercise to test your BCP. The primary database becomes a standby. One of the standby databases become a primary. There are only three required steps for a switchover. They are;
1. Run Command Line Interface
A. Linux> dgmgrl
2. Login in to DGMGRL

A. DGMGRL> connect DGADMIN
3. Execute the switchover command

A. SWITCHOVER TO <DG_STANDBY>
How does Broker perform the Switchover, [2], Chapter 5.3?

1. Broker verifies that the primary and the target standby databases are in the following states:
A. The primary database is enabled and is in the ONLINE state.
B. The participating standby database is enabled and is in the ONLINE state.
Broker allows a switchover to proceed if there are no errors for the primary database and the standby database that you selected to participate in the switchover operation.
2. There are special cases for a RAC database.
A. If the primary database is a RAC database, the broker keeps only one instance running and shuts down all other instances before it continues the switchover.
B. If the standby database you want to switch to the primary role is a RAC database, the broker shuts down all instances except the apply instance before it continues the switchover.
C. If those other instances cannot be shut down, the switchover fails. In this case, you must manually shut down those other instances and re-issue the switchover command. Do not start any new instances during the switchover. If you must manually shut down the instances on the standby database, do not shut down the apply instance.
3. Broker switches roles between the primary and standby databases. The broker first converts the original primary database to run in the standby role. Then, the broker transitions the target standby database to the primary role. If any errors occur during either conversion, the broker stops the switchover.
4. Broker updates the broker configuration file to record the change in roles. Because the configuration file profiles all database objects in the configuration, this ensures that each database will run in the correct role should it be restarted later for any reason.
5. Broker restarts the new standby (old primary) database if the switchover occurs with a physical standby database, and Redo Apply begins applying redo data from the new primary database. If this is a RAC database, the broker restarts the instances that it shut down prior to the switchover.
6. Restarts the new primary database if it was a physical standby database, opens it in read/write mode, and starts redo transport services transmitting redo data to the standby databases, and to the old primary database.

A. If the switchover occurs to a logical standby database, there is no need to restart any databases.

B. If this is a RAC database, the broker restarts the instances that it shut down prior to the switchover.
The broker verifies the state and status of the databases to ensure that the switchover transitioned the databases to their new role correctly. Standby databases not involved in the switchover and not disabled by the broker after the switchover will continue operating in the state they were in before the switchover. But the direction of the flow of redo is changed. The redo is sent from the new primary to the existing Standby databases.
See Figures 10 and 11 for database example of a switchover (S006 to S006b)

Figure 10: S006 Primary, S006b Standby

[image: image10.emf]Primary

Database

(S006)

Standby

Database

(S006b)

REDO

Primary

Site

Alternate

Site

REDO

HPUX ++> dgmgrl

Welcome to DGMGRL, type "help" for information.

DGMGRL> connect dgadmin/??????

Connected.

DGMGRL> show configuration

Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxAvailability

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Primary database

 dg_s006b - Physical standby database

Current status for "drcs006":

SUCCESS

DGMGRL> switchover to dg_s006b

Performing switchover NOW, please wait...

Operation requires shutdown of instance "s006" on database "dg_s006"

Shutting down instance "s006"...

ORA-01109: database not open

Database dismounted.

ORACLE instance shut down.

Operation requires shutdown of instance "s006b" on database "dg_s006b"

Shutting down instance "s006b"...

ORA-01109: database not open

Database dismounted.

ORACLE instance shut down.

Operation requires startup of instance "s006" on database "dg_s006"

Starting instance "s006"...

ORACLE instance started.

Database mounted.

Operation requires startup of instance "s006b" on database "dg_s006b"

Starting instance "s006b"...

ORACLE instance started.

Database mounted.

Switchover succeeded, new primary is "dg_s006b"

DGMGRL> show configuration

Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxAvailability

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Physical standby database

 dg_s006b - Primary database

Current status for "drcs006":

SUCCESS

Figure 11: S006b Primary, S006 Standby

[image: image11.emf]Standby

Database

(S006)

Primary

Database

(S006b)

REDO

Primary

Site

Alternate

Site

REDO

Note the order of shutdown and startup. All switchover operations use this order.

1. Shutting down instance "s006"... (Primary)
2. Shutting down instance "s006b"... (Standby)
3. Starting instance "s006"...(New Standby)
4. Starting instance "s006b"...(New Primary)
Failover Operation

The failover is an unplanned event, such as a site disaster. It can be a planned event to test your BCP for recovery, in the event of simulated disaster. When using the failover operation, your current primary location and database is lost and you fail over or start up running your business on applications and databases at a remote site. The old standby database at the remote or alternate location becomes your new primary database. Using Data Guard prior to version 10, you had to rebuild the old primary as a new standby. But in 10g, Flashback technology, allows you to recover and re-instate the old standby. See the next section for details on this Broker operation (reinstate <database>).

In most cases, the Broker failover is a manual step - not automated. A decision is made by upper management to implement the BCP and a manual failover operation is started. The Broker command Failover to <DG_Standby> is run. In addition to the failover command, there may or may not be data lost. This is dependant on whether the primary and standby were transactionally consistent at the time of the primary database failure or site disaster.
There are only three required steps for a broker failover. You must connect to the Target Standby location. They are

1. Run Command Line Interface

A. Linux> dgmgrl
2. Login in to DGMGRL

A. DGMGRL> connect DGADMIN
3. Execute the failover command

A. FAILOVER TO <DG_STANDBY>
There are two types of failovers (immediate failover, complete failover). The immediate is forced and no additional logs are applied. It is also the fastest type of failover. Using an immediate failover requires you to re-enable the original primary database and all other standby databases not involved in the failover. After the Standby databases are re-enabled they can serve as standby databases to the new primary database.
The syntax for the immediate failover is:

FAILOVER TO <DG_STANDBY> IMMEDIATE;

The syntax for the complete failover is:
FAILOVER TO <DG_STANDBY>;

The complete failover is recommended and depending on when the failover occurs, it is possible that no committed transactions or data are lost.

How does the Broker Perform a Complete Failover Operation [2], Chapter 5.4.2.1?

Once you start a complete failover, the Broker:
1. Checks to see if the primary database is still available and, if so, issues a warning message asking whether you want to continue with the failover operation. In other words if you issue a failover and both sites are available, broker informs you that a switchover is possible. This prevents any data loss.

2. Verifies that the target standby database is enabled. If the database is not enabled, you will not be able to perform a failover to this database.
a. If the target is a RAC standby database, the broker shuts down all instances except the apply instance.
3. Waits for the target standby database to finish applying any remaining archived redo log files before stopping Redo Apply or SQL Apply.
4. Transitions the target standby database into the primary database role, as follows:

a. Opens the new primary database in read/write mode.

b. Determines whether or not any standby databases that did not participate in the failover operation have applied redo data beyond the new primary database, and thus need to be re-enabled.

i. If a standby database not involved in the failover is not disabled by the broker during this failover, it will remain in the state it was in before the failover.
ii. For example, if a physical standby database was operating in read-only mode, it will remain in read-only mode.

c. Starts redo transport services to begin transmitting redo data to all standby databases not involved in the failover and not required to be re-enabled.
5. If the target is a RAC standby database, the broker restarts instances that it shutdown prior to the failover.

6. The broker allows the failover to proceed as long as there are no errors for the standby database that you selected to participate in the failover. Errors occurring for any standby databases not involved in the failover will not stop the failover. If you initiated a complete failover and it fails, you might need to retry the failover as an immediate failover.
How des the Broker Performs an Immediate Failover Operation [2], Chapter 5.4.2.2?

Once you start an immediate failover, the broker:

1. Verifies that the target standby database is enabled. If the standby database is not enabled for management by the broker, then the failover cannot occur.
2. Stops Redo Apply or SQL Apply on the standby database immediately, without waiting until all available redo data has been applied. This may result in data loss.
3. Transitions the target standby database into the primary role, opens the new primary database in read/write mode, and starts redo transport services. After an immediate failover completes to a physical standby database, all the standby databases in the configuration, regardless of their type, are disabled. They must be re-enabled before they can serve as standby database to the new primary database.

The broker allows the failover to proceed as long as there are no errors for the standby database that you selected to participate in the failover.

How does Broker perform the Failover, [2], Chapter 5.4?

Step 1. Determine the best available standby database for the target failover. If there is a choice, you need to consider such factors as:

A. Choose a physical standby database versus logical standby,
B. Network latency to your standby database sites, and
C. The computing capabilities at a future primary database site.
Step 2 Start the failover using DGMGRL.

Manual Failover Using DGMGRL:
On the target standby database, issue the FAILOVER command to invoke a complete failover, specifying the name of the standby database that you want to change into the primary role:

DGMGRL> FAILOVER TO database-name;
Step 3. Reset the protection mode. After a manual failover (complete or immediate), the overall Data Guard protection mode is handled as follows:

D. If the protection mode was at maximum protection, it is reset to maximum performance. You can upgrade the protection mode later, if necessary.
E. If the protection mode was at maximum availability, it remains at maximum availability.
Step 4. Re-establish a disaster-recovery configuration. To maintain a viable disaster-recovery solution in the event of another disaster, you may need to perform the additional steps such as:

F. Reinstate the original primary database to act as a standby database in the new configuration.

G. Flash back (or reinstate) standby databases in the configuration that were disabled by the broker.
Note the reinstate command is explained in the next section.

See Figures 10 and 12 for a database example of a failover (S006 to S006b).
HPUX ++> dgmgrl

Welcome to DGMGRL, type "help" for information.

DGMGRL> connect dgadmin/??????

Connected.

DGMGRL> show configuration

Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxAvailability

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Primary database

 dg_s006b - Physical standby database

Current status for "drcs006":

SUCCESS

DGMGRL> FAILOVER TO dg_s006b

Performing failover NOW, please wait...

Failover succeeded, new primary is "dg_s006b"

DGMGRL> show configuration

Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxPerformance

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Physical standby database (disabled)

 dg_s006b - Primary database

Current status for "drcs006":

SUCCESS

Figure 12: S006b Primary, S006 Disabled (after failover)

[image: image12.emf]Standby

Database

(S006)

Primary

Database

(S006b)

REDO

Primary

Site

Alternate

Site

REDO

Note that the failover operation succeeded and the configuration has a status of “SUCCCESS”. But the old primary s006 (dg_s006) is disabled. We have no active standby. The next section describes how we use Flashback and the Broker command ‘reinstate’ to change s006 back to a standby and available for switchover operations.

Using Flashback Technology with the Broker Reinstate database command after running the Broker failover operation

In a real disaster the failed primary would not be accessible to rebuild as a new Standby. Prior to 10g, after issuing a Broker “FAILOVER” command the old primary had to be recreated. In 10g, the reinstate capability with flashback technology allows you to quickly get the Standby back so that testing other unplanned failover exercises can continue.
In 10g, prior to the issuing the Broker “FAILOVER <Database>” command, you need to set up the Flash Recovery Area (FRA). Flashback logs are stored in the FRA. The flashback logs will enable you to unwind the database. This enables you to go back to the time period prior the database failure. By using the Broker command “REINSTATE <Database>”; most of the work to get the failed database backup and running is done automatically. A few additional steps are needed to get the failed primary set up as the new standby. See the High-level Steps below.

A key part of this process is the use of flashback technology, which allows you to rollback the database and removes changes made in the database to a point in the past. The failed primary is rolled back to the point or SCN when the standby database became the new primary.

The steps to unwind the database are performed automatically by the Data Guard Broker command ‘REINSTATE <Database>”. But the manual steps are listed below to explain what Broker is doing under the covers. After these three steps the old Primary is converted to a new Standby. These steps assume that the failover operation has already occurred. Refer to Figure 12 above.

New Primary (S006b)

1. Find the SCN at which the old Standby became the new primary database. Issue the following command:

SQL> SELECT TO_CHAR(STANDBY_BECAME_PRIMARY_SCN) FROM V$DATABASE;
Old Primary (S006)

2. Flashback the old failed primary to the SCN obtained from step 1.

A. SQL> SHUTDOWN IMMEDIATE;

B. SQL> STARTUP MOUNT;

C. SQL> FLASHBACK DATABASE TO SCN ;

Old Primary (S006)

3. Convert the old primary to a new physical standby database

A. SQL> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

B. SQL> SHUTDOWN IMMEDIATE;

C. SQL> STARTUP MOUNT;

High-level Steps to perform the Data Guard Broker Failover and database reinstate

1. Check Status of current configuration (before failover)

2. Issue the failover command from the standby site

· DGMGRL> failover to dg_s006b;

3. Check Status of current configuration (after failover)

4. Shutdown immediate the old primary (s006)

5. Startup mount the old primary (s006)

6. Connect on the standby (DGMGRL) and issue

· DGMGRL> REINSTATE DATABASE dg_s006;

7. Issue switchover to go back to the original DG role site positions

· DGMGRL> switchover to dg_s006

8. Show configuration to see that the old Standby (new primary) has be reinstated and is now enabled. Also, note that the Data Guard Broker configuration is the same as the original.

Detailed Steps to perform the Data Guard Failover and database reinstate.

S006b (Standby) – Target Failover database
1. DGMGRL> show configuration

Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxAvailability

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Primary database

 dg_s006b - Physical standby database

Current status for "drcs006":

SUCCESS

2. DGMGRL> failover to dg_s006b

3. DGMGRL> show configuration
Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxPerformance

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Physical standby database (disabled)

 dg_s006b - Primary database

Current status for "drcs006":

SUCCESS

S006 (old primary):

4. SQL> shutdown immediate

5. SQL> startup mount
S006 (old primary):

6. DGMGRL> REINSTATE DATABASE dg_s006

S006b (New Primary):

7. DGMGRL> switchover to dg_s006

8. DGMGRL> show configuration

Configuration

 Name: drcs006

 Enabled: YES

 Protection Mode: MaxAvailability

 Fast-Start Failover: DISABLED

 Databases:

 dg_s006 - Primary database

 dg_s006b - Physical standby database

Current status for "drcs006":

SUCCESS

SQL Generated by Broker Switchover
One of the biggest complaints by DBAs is that “They don’t want a command processor (Broker) changing the SQL and init parameters that were explicitly set”. But by setting values for Broker properties, Broker checks and make substitutions to database and instance init parameters for all the databases in the configuration. If a Broker property is not set, values from database an instance parameters are imported into Broker properties. Each time the command line processor (DGMGRL) or OMS is given a command such as switchover or failover, the primary and standby databases are recycled. During that time Broker is modifying database init parameters within the spfile. It does that automatically so that the DBA doesn’t have to make any changes with database and instance parameters. The Broker performs these operations on the correct database and in the correct order and at the correct time.

See Appendix C, SQL Commands for Switchover (S006 (S006b), for details of DDL (SQL) changes captured from the alert logs for a switchover using the primary database S006 and changing to the new primary database S006b. Time / date information and SQL commands are listed for both S006 (primary) and S006b (New Primary).

The following is a spreadsheet showing the timing of required SQL commands from both databases. See Table 3. This is the same example as above (Switching from S006 as primary to S006b). Refer to Figure 11. Note which commands are entered on the Primary and which are entered on the Standby (new Primary). Also note that Broker performs these operations in parallel switching back or forth between the servers. There are a total of eight (8) commands issued on the current Primary (S006) and four (4) commands issued on the new Primary (S006b).
TABLE 3: DG Switchover (SQL): S006 (primary) ---> S006b (Primary)

	Time
	Primary Site
	Standby Site

	
	S006
	S006b

	10:59:13
	ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY WITH SESSION SHUTDOWN;
	

	
	
	

	10:59:43
	ALTER SYSTEM SET log_archive_dest_2='' SCOPE=BOTH;
	ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

	
	
	

	10:59:46
	
	ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WAIT WITH SESSION SHUTDOWN;

	
	
	

	10:59:50
	Shutdown immediate;
	

	11:00:05
	
	Shutdown immediate

	
	
	

	11:00:38
	STARTUP NOMOUNT
	

	
	
	

	11:01:10
	alter database mount standby database;
	

	
	
	

	11:01:31
	
	Startup

	
	
	

	11:02:52
	ALTER SYSTEM SET fal_server='(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(
HOST=ora-s006b-agb.air.ups.com)(PORT=1522)))
(CONNECT_DATA=
(SERVICE_NAME=dg_s006b_XPT.air.ups.com)(SERVER=dedicated)))' SCOPE=BOTH;
	

	
	
	

	11:02:52
	ALTER SYSTEM SET fal_client='(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(
HOST=ora-s006-asc.air.ups.com)(PORT=1522)))
(CONNECT_DATA=(SERVICE_NAME=dg_s006_XPT.air.ups.com)
(INSTANCE_NAME=s006)(SERVER=dedicated)))' SCOPE=BOTH;
	

	
	
	

	11:03
	RECOVER MANAGED STANDBY DATABASE DISCONNECT USING CURRENT LOGFILE;
	

	
	
	

	11:03:09
	Completed
	

	
	
	

	11:04:00
	
	 Completed

Tracking and diagnosing problems [2], Chapter 4.7
Configuration Status

Broker has a heart beat mechanism that is constantly pinging all sites within the configuration. Broker is also checking on the status of the Broker configuration in all databases within the configuration. The mechanism for checking is to compare the actual state and settings in the database with the Broker configuration file. There are many other errors or services that could be in error. Some examples for possible errors are listed below:

Log Transport Services can’t deliver the logs because the network is down or the listener is not available

Manage Recovery, for some reason such as no space left on the file system, has been turned off

Log Archive Dest+# parameters in the spfile don’t agree or an inaccurate

Health Check Mechanism

Below is a detailed list of items Broker monitors as part of its health check mechanism [2], Chapter 4.7. This is one of the main reasons that using Broker is a Best Practice for monitoring and managing Data Guard.

Primary database
Health check determines whether the following conditions are met:

1. Database is in the state specified by the user, as recorded in the Broker configuration file.

2. Database is in the correct data protection mode.

3. Database is using a server parameter file.

4. Database is in the ARCHIVELOG mode.

5. Database guard is turned off.

6. Supplemental logging is turned on when there is a logical standby database in the configuration.

7. Redo transport services do not have any errors.

8. Database settings match those specified by the Broker configurable properties.

9. Redo transport settings match those specified by the redo transport-related properties of the standby databases.

Standby database
Health check determines whether the following conditions are met:

1. Database is in the state specified by the user, as recorded in the Broker configuration file.

2. Database is using a server parameter file.

3. Database settings match those specified by the Broker configurable properties.

4. Database guard is turned on when the database is a logical standby database.

5. Database Status set to “SUCCESS”
6. Primary and target standby databases are synchronized if fast-start failover is enabled.

If there is an error in the Broker configuration after running the ‘Show Configuration’ command, the following properties can be monitored:

· StatusReport – Problems from the a Health check run
· LogXptStatus – Log Transport Status
· InconsistentProperties – Inconsistent Broker Properties
· InconsistentLogXptProps – Inconsistent Log Transport Properties
Common Problems
The StatusReport property provides a list of all health check problems that Broker detected during a health check. This is usually the first property you use to check the database status. See Appendix D, Show Command Examples and Trouble Shooting.

Metrics and Monitoring
Data Guard Broker also contains a heartbeat mechanism to monitor the Data Guard status of all databases within the Data Guard configuration. This heartbeat system constantly pings between each server and checks the status of the configuration. A health check report is constantly being run. The minute that there is a problem, such as a network outage or invalid parameter or issues with either the transport or applying logs; you are notified.

Common METRICS TO Monitor Data Guard
Number Based Metrics

The main three metrics that most folks monitor with custom scripts are:
1. Data Guard Status – Status of Data Guard as each site,
2. Logs not transferred – Archive Logs generated on Primary, but not yet transferred to the Standby, and
3. Logs transferred, but not applied – Archive Logs current on the Standby server, but have not been applied to the database.
OMS

Time-based Metrics to

In OMS theses three metrics are turned from monitoring number of logs not transferred or not applied to time based metrics. These new metrics are:

1. Archive Logs Lag (Seconds) – Number of seconds that the Standby is behind the Primary

2. Transport Logs Lag (Seconds) – Number of seconds it will take to transfer logs that are missing on the Standby

3. Estimated Failover time (Seconds) – Estimated number of seconds to failover to a Standby, apply any logs, and startup if required.
In Figure 3, of OMS Grid Control, you see that the Apply (Logs) Lag is 9 seconds, which means that the Standby is 9 seconds behind the primary or the Standby needs 9 seconds to apply the logs already sent from the Primary. Also there is a 4 second delay in the transport of logs from the primary. This means that it takes additional 4 seconds to transfer all logs to the Standby. The Last Received Log and Applied log are number 3862. The estimated Failover Time is seconds is 0.
OMS DG Verify report
The report performs the following checks on demand:
1. Connects to each database in the Broker configuration.

2. Runs the Broker Health check, as described earlier.

3. Updates the link on the database Home page

4. Verifies the Data Protection Mode

5. Checks for the existence of Standby Redo Logs if they are required.

6. Check on the Status of Data Guard

7. Checks all Broker Properties

8. Performs a log switch on Primary and verifies that the log was applied on the Standby

9. Produces an output report

To run the DG Verify report, click on the database and go to the Data Guard page. Click on DG Verify and wait for the report to return. It’s a good practice to run a DG Verify Report and check the output prior to performing a switchover operation. See Figure 14 for a running report and Figure 15 for the output.
Figure 14: OMS DG Verify Report
[image: image13.png]
Figure 15: Output of the DG Verify Report
[image: image14.png]
The DG Performance page allows you to review the Lag Times in seconds for both Transport and Apply for each database in the configuration. Redo generation in KB / second on the primary and then the apply rates in KB / second on the Standby is new on this page. The apply rate is averaged over the last 3 logs. The information can be shown in a current and real time refresh, the last 24 hours, or a week or the last 31 days. This information is useful to help you tune the size of the redo logs, the frequency of the redo log switches, the performance hit on Data Guard on the primary database and also review the network time that is being consumed to send the logs to your Standbys.
Figure 16: OMS Data Guard Performance Page

[image: image15.png]
Appendix

Appendix A. Table 4: CONFIGURABLE Properties, Section 9-1 [2]; additional columns were added to the table.
	Broker Property
	Scope
	Pertains to
	ROLE
	Imported
	Initialization Parameter

	AlternateLocation
	Instance
	Redo transport services
	Standby
	No

	

	ApplyInstanceTimeout
	Database
	Redo Apply and SQL Apply
	Standby
	No
	

	ApplyParallel
	Database
	Redo Apply
	Standby
	No
	

	ArchiveLagTarget
	Database
	Redo transport services
	Primary
	Yes

	ARCHIVE_LAG_TARGET

	Binding
	Database
	Redo transport services
	Standby1
	Yes
	BINDING column of the V$ARCHIVE_DEST view of the

primary database

	DbFileNameConvert
	Database
	Redo transport services
	Standby
	Yes
	DB_FILE_NAME_CONVERT

	DelayMins
	Database
	Redo Apply and SQL Apply
	Standby1
	Yes
	DELAY_MINS column of the V$ARCHIVE_DEST view of

the primary database

	Dependency
	Database
	Redo transport services
	Standby1
	No
	

	FastStartFailoverTarget
	Database
	Database Fast-start failover
	Primary or Standby
	No
	

	FastStartFailoverThreshold
	Configuration
	Fast-start failover
	Target standby database that is about to fail over to the primary role
	No
	

	HostName
	Instance
	Instance identification
	Primary and Standby
	Yes
	HOST_NAME column of the V$INSTANCE view

	InitialConnectIdentifier
	Database
	Broker communication
	Primary and Standby
	No
	

	LocalListenerAddress
	Instance
	Broker communication
	Primary and Standby
	Yes
	LOCAL_LISTENER

	LogArchiveFormat
	Instance
	Redo transport services
	Primary and Standby
	Yes
	LOG_ARCHIVE_FORMAT

	LogArchiveMaxProcesses
	Database
	Redo transport services
	Primary and Standby
	Yes
	LOG_ARCHIVE_MAX_PROCESSES

	LogArchiveMinSucceedDest
	Database
	Redo transport services
	Primary
	Yes
	LOG_ARCHIVE_MIN_SUCCEED_DEST

	LogArchiveTrace
	Instance
	Diagnosis
	Primary and Standby
	Yes
	LOG_ARCHIVE_TRACE

	LogFileNameConvert
	Database
	Redo transport services
	Standby
	Yes
	LOG_FILE_NAME_CONVERT

	LogShipping
	Database
	Redo transport services
	Standby1
	No
	

	LogXptMode
	Database
	Redo transport service
	Standby1
	Yes
	ARCHIVER, TRANSMIT_MODE, and AFFIRM columns of

V$ARCHIVE_DEST view of the primary database

	LsbyASkipCfgPr
	Database
	SQL Apply
	Standby
	No
	

	LsbyASkipErrorCfgPr
	Database
	SQL Apply
	Standby
	No
	

	LsbyASkipTxnCfgPr
	Database
	SQL Apply
	Standby
	No
	

	LsbyDSkipCfgPr
	Database
	SQL Apply
	Standby
	No
	

	LsbyDSkipErrorCfgPr
	Database
	SQL Apply
	Standby
	No
	

	LsbyDSkipTxnCfgPr
	Database
	SQL Apply
	Standby
	No
	

	LsbyMaxEventsRecorded
	Database
	SQL Apply
	Standby
	Yes
	MAX_EVENTS_RECORDED row of

SYSTEM.LOGSTDBY$PARAMETERS

	LsbyMaxSga
	Instance
	SQL Apply
	Standby
	Yes
	MAX_SGA row of SYSTEM.LOGSTDBY$PARAMETERS

	LsbyMaxServers
	Instance
	SQL Apply
	Standby
	Yes
	MAX_SERVERS row of

SYSTEM.LOGSTDBY$PARAMETERS

	LsbyRecordAppliedDdl
	Database
	SQL Apply
	Standby
	Yes
	RECORD_APPLIED_DDL row of

SYSTEM.LOGSTDBY$PARAMETERS

	LsbyRecordSkipDdl
	Database
	SQL Apply
	Standby
	Yes
	RECORD_SKIP_DDL row of

SYSTEM.LOGSTDBY$PARAMETERS

	LsbyRecordSkipErrors
	Database
	SQL Apply
	Standby
	Yes
	RECORD_SKIP_ERRORS row of

SYSTEM.LOGSTDBY$PARAMETERS

	LsbyTxnConsistency
	Database
	SQL Apply
	Standby
	Yes
	PRESERVE_COMMIT_ORDER row of

SYSTEM.LOGSTDBY$PARAMETERS

	MaxConnections
	Database
	Primary
	Standby
	Yes
	MAX_CONNECTIONS column of the V$ARCHIVE_DEST

view for the primary database

	MaxFailure
	Database
	Redo transport services
	Standby1
	Yes
	MAX_FAILURE column of V$ARCHIVE_DEST view of

the primary database

	NetTimeout
	Database
	Redo transport services
	Standby1
	Yes
	NET_TIMEOUT column of V$ARCHIVE_DEST view of

the primary database

	PreferredApplyInstance
	Database
	Redo Apply and SQL Apply
	Standby
	No
	

	ReopenSecs
	Database
	Redo transport services
	Standby1
	Yes
	REOPEN_SECS column of V$ARCHIVE_DEST view of

the primary database

	SidName
	Instance
	Instance identification
	Primary and Standby
	Yes
	INSTANCE_NAME column of the V$INSTANCE view

	StandbyArchiveLocation
	Instance
	Redo transport services
	Standby
	Yes
	DESTINATION column of the V$ARCHIVE_DEST fixed

view of the standby database where the destination is a local

destination and where the VALID_FOR attribute is compatible with

the string (STANDBY_ROLE, STANDBY_LOGFILE); if no such

destination exists, import is from the STANDBY_ARCHIVE_DEST

	StandbyFileManagement
	Database
	Redo Apply and SQL Apply
	
	Yes
	STANDBY_FILE_MANAGEMENT

1 Although this property is set for the standby database, it is indirectly related to the redo transport services for the primary database. The broker propagates the setting you specify on the standby database to the corresponding attributes of the LOG_ARCHIVE_DEST_n value of the primary database.

Appendix B. Broker Creation Steps

Step 1. Set up Data Guard using SQL and test switchover.

Step 2. Create DGADMIN account. This account is also used in OMS. Additional privileges are added to use the account in OMS.

Sql> Create User Dgadmin

 Identified By ???

 Default Tablespace User01

 Temporary Tablespace Temp01

 Profile Default

 Account Unlock;

 Grant Connect To Dgadmin;

 Grant Oem_Monitor To Dgadmin;

 Grant Execute_Catalog_Role To Dgadmin;

 Alter User Dgadmin Default Role All;

 Grant Analyze Any To Dgadmin;

 Grant Unlimited Tablespace To Dgadmin;

 Grant Select Any Dictionary To Dgadmin;

 -- On the server

 -- sqlplus / as sysdba

 -- Grant Sysdba To Dgadmin;

 --

Step 3 Modify init parameters in spfile.

--After log switching and before dmon start

A. Primary (New York City) p900

a) SQL> alter system set db_unique_name = 'dg_p900' scope=spfile;

b) SQL> alter system set LOG_ARCHIVE_CONFIG='DG_CONFIG=(dg_p900,dg_p900b, dg_p900c)' scope=both;

c) SQL> alter system set log_archive_dest_1='LOCATION=/b001/oradata/p900/archlog_backup/ MANDATORY REOPEN db_unique_name=dg_p900 VALID_FOR=(ALL_LOGFILES, ALL_ROLES)' scope=both;

d) SQL> alter system set log_archive_dest_2='service="ora-p900b.oracle.com", LGWR ASYNC NOAFFIRM DELAY=0 OPTIONAL MAX_FAILURE=0 REOPEN=300 REGISTER NET_TIMEOUT=30 db_unique_name=dg_p933b VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' scope=both;

e) SQL> alter system set log_archive_dest_3='service="ora-p900c.oracle.com", LGWR ASYNC NOAFFIRM DELAY=0 OPTIONAL MAX_FAILURE=0 REOPEN=300 REGISTER NET_TIMEOUT=30 db_unique_name=dg_p933c VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' scope=both;

f) SQL> Alter system set LOG_ARCHIVE_DEST_STATE_1=ENABLE scope=both;

g) SQL> Alter system set LOG_ARCHIVE_DEST_STATE_2=ENABLE scope=both;

h) SQL> Alter system set LOG_ARCHIVE_DEST_STATE_3=ENABLE scope=both;

i) Sql> alter system set dg_broker_config_file1 = '/u003/oradata/p900/dr1dg_p933.dat' scope=both;

j) Sql> alter system set dg_broker_config_file2 = '/u004/oradata/p900/dr2dg_p933.dat' scope=both;

k) SQL> alter system set standby_archive_dest = '/b001/oradata/p900/archlog_backup/' scope=both;

l) Alter system set local_listener = ’(ADDRESS=(PROTOCOL=TCP)(HOST=ora-p900.oracle.com)(PORT=1521))’ scope=both;

B. Standby (Chicago) – P900b

· SQL> alter system set db_unique_name = 'dg_p900b' scope=spfile;

· SQL> alter system set LOG_ARCHIVE_CONFIG='DG_CONFIG=(dg_p900b,dg_p900c, dg_p900)' scope=both;

· SQL>alter system set log_archive_dest_1='LOCATION=/b001/oradata/p900b/archlog_backup/ MANDATORY REOPEN db_unique_name=dg_p900b VALID_FOR=(ALL_LOGFILES, ALL_ROLES)' scope=both;

· SQL> alter system set log_archive_dest_2='service="ora-p900.oracle.com",

 LGWR ASYNC NOAFFIRM DELAY=0 OPTIONAL

 MAX_FAILURE=0 REOPEN=300 REGISTER NET_TIMEOUT=30

 db_unique_name=dg_p900

 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)’ scope=both;

· SQL> Alter system set LOG_ARCHIVE_DEST_STATE_1=ENABLE scope=both;

· SQL> Alter system set LOG_ARCHIVE_DEST_STATE_2=ENABLE scope=both;

· Sql> alter system set dg_broker_config_file1 = '/u003/oradata/p900b/dr1dg_p933b.dat' scope=both;

· Sql> alter system set dg_broker_config_file2 = '/u004/oradata/p900b/dr2dg_p933b.dat' scope=both;

· SQL> alter system set standby_archive_dest = '/b001/oradata/p900b/archlog_backup/' scope=both;

· Alter system set local_listener = ’(ADDRESS=(PROTOCOL=TCP)(HOST=ora-p900b.oracle.com)(PORT=1521))’ scope=both;

C. Standby (Denver) – P900c

· SQL> alter system set db_unique_name = 'dg_p900c' scope=spfile;

· SQL> alter system set LOG_ARCHIVE_CONFIG='DG_CONFIG=(dg_p900c,dg_p900b, dg_p900)' scope=both;

· SQL>alter system set log_archive_dest_1='LOCATION=/b001/oradata/p900c/archlog_backup/ MANDATORY REOPEN db_unique_name=dg_p900c VALID_FOR=(ALL_LOGFILES, ALL_ROLES)' scope=both;

· SQL> alter system set log_archive_dest_2='service="ora-p900.oracle.com",

 LGWR ASYNC NOAFFIRM DELAY=0 OPTIONAL

 MAX_FAILURE=0 REOPEN=300 REGISTER NET_TIMEOUT=30

 db_unique_name=dg_p900

 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)’ scope=both;

· SQL> alter system set LOG_ARCHIVE_DEST_STATE_1=ENABLE scope=both;

· SQL> Alter system set LOG_ARCHIVE_DEST_STATE_2=ENABLE scope=both;

· Sql> alter system set dg_broker_config_file1 = '/u003/oradata/p900b/dr1dg_p933b.dat' scope=both;

· Sql> alter system set dg_broker_config_file2 = '/u004/oradata/p900b/dr2dg_p933b.dat' scope=both;

· SQL> alter system set standby_archive_dest = '/b001/oradata/p900c/archlog_backup/' scope=both;

· Alter system set local_listener = ’(ADDRESS=(PROTOCOL=TCP)(HOST=ora-p900c.oracle.com)(PORT=1521))’ scope=both;

D. Primary and Standbys

· Startup broker.

· SQL> alter system set dg_broker_start = true scope=both;

Step 4. Create Broker Configuration using DGMGRL

A. Set up Broker Configuration for three sites

a) Login in to DG Broker as DGADMIN

· DGMGRL> connect DGADMIN/xxxxxx

b) Create the primary database (New York City) for the configuration

· DGMGRL> CREATE CONFIGURATION 'drcp900' as

PRIMARY DATABASE IS 'dg_p900’

CONNECT IDENTIFIER IS ora-p900.oracle.com;

c) Create the Standby database (Chicago) for the configuration.

· DGMGRL> ADD DATABASE 'dg_p900b' as

CONNECT IDENTIFIER IS ora-p900b.oracle.com

MAINTAINED AS PHYSICAL;

d) Create the Standby database (Denver) for the configuration.

· DGMGRL> ADD DATABASE 'dg_p900c' as

CONNECT IDENTIFIER IS ora-p900c.oracle.com

MAINTAINED AS PHYSICAL;

e) Set up Standby Archive Location property (New York City)

· DGMGRL> EDIT INSTANCE p900 SET PROPERTY StandbyArchiveLocation = '/b001/oradata/p933b/archlog_backup/';

f) Set up Standby Archive Location property (Chicago)

· DGMGRL> EDIT INSTANCE p900b SET PROPERTY StandbyArchiveLocation = '/b001/oradata/p900b/archlog_backup/';

g) Set up Standby Archive Location property (Denver)

· DGMGRL> EDIT INSTANCE p900c SET PROPERTY StandbyArchiveLocation = '/b001/oradata/p900c/archlog_backup/';

h) Set up Log Transport Mode to be Asynchronous (New York City) DGMGRL> EDIT DATABASE 'dg_p900' SET PROPERTY 'LogXptMode'='ASYNC';

i) Set up Log Transport Mode to be Asynchronous (Chicago) DGMGRL> EDIT DATABASE 'dg_p900b' SET PROPERTY 'LogXptMode'='ASYNC';

j) Set up Log Transport Mode to be Asynchronous (Denver) DGMGRL> EDIT DATABASE 'dg_p900c' SET PROPERTY 'LogXptMode'='ASYNC';

k) Set up Data Protection Level to be Max Performance. We are using Log Writer and Asynchronous mode to deliver logs between the sites, which are greater than 400 miles apart.

· DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxPerformance;

l) Enable the Broker Configuration

· DGMGRL> enable configuration;

m) Check for a successful status of the configuration. You are looking for the work :SUCCESS”. If not, resolve the warnings or errors.

· Show configuration;

Step 5. Update listener file to use the SYSDBA account (DGADMIN) to startup and shutdown the databases during switchover and failover operations.

A. Primary – Add a SID Descriptor for DGMGRL for p900 (New York City)

…

 (SID_DESC =

 (GLOBAL_DBNAME = dg_p900_DGMGRL.oracle.com)

 (SID_NAME = p900)

 (ORACLE_HOME = /u001/app/oracle/product/102020.073Q)

 (PRESPAWN_MAX = 10)

)

)

 …

B. Standby - Add a SID Descriptor for DGMGRL for p900b (Chicago)

…

 (SID_DESC =

 (GLOBAL_DBNAME = dg_p900b_DGMGRL.oracle.com)

 (SID_NAME = p900b)

 (ORACLE_HOME = /u001/app/oracle/product/102020.073Q)

 (PRESPAWN_MAX = 10)

)

)

…

C. Standby - Add a SID Descriptor for DGMGRL for p900c (Denver)

…

 (SID_DESC =

 (GLOBAL_DBNAME = dg_p900c_DGMGRL.oracle.com)

 (SID_NAME = p900c)

 (ORACLE_HOME = /u001/app/oracle/product/102020.073Q)

 (PRESPAWN_MAX = 10)

)

)

…

Appendix C. SQL Commands for Switchover (S006 (S006b)

Commands on s006 (Primary)

Time

SQL
10:59:13 2007 SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY WITH SESSION SHUTDOWN;

10:59:43 2007 - completed

10:59:13 2007 SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY (s006)

10:59:43 SQL> ALTER SYSTEM SET log_archive_dest_2='' SCOPE=BOTH;

10:59:43 2007 SQL> ALTER SYSTEM SET log_archive_dest_state_2='ENABLE' SCOPE=BOTH;

10:59:50 2007 SQL> Shutdown immediate;

10:59:54 2007 SQL> alter database CLOSE NORMAL

10:59:54 2007 SQL> alter database DISMOUNT

11:00:38 2007 SQL> STARTUP NOMOUNT

11:00:38 2007 Starting ORACLE instance (normal)

11:01:03 2007 DMON started with pid=12, OS id=22415

11:01 SQL> alter database mount standby database;

11:01:10 2007 Physical Standby Database mounted.

11:02:50 2007 SQL> ALTER SYSTEM SET log_archive_trace=0 SCOPE=BOTH SID='s006';

11:02:50 SQL> ALTER SYSTEM SET log_archive_format='%t_%s_%r.dbf' SCOPE=SPFILE SID='s006';

11:02:50 2007 SQL> ALTER SYSTEM SET standby_archive_dest='' SCOPE=BOTH SID='s006';

11:02:51 2007 SQL> ALTER SYSTEM SET standby_file_management='AUTO' SCOPE=BOTH SID='*';

11:02:51 2007 SQL> ALTER SYSTEM SET archive_lag_target=1800 SCOPE=BOTH

SID='*';

11:02:51 2007 SQL> ALTER SYSTEM SET log_archive_max_processes=2 SCOPE=BOTH SID='*';

11:02:51 2007 SQL> ALTER SYSTEM SET log_archive_min_succeed_dest=1 SCOPE=BOTH SID='*';

11:02:51 2007 SQL> ALTER SYSTEM SET log_archive_min_succeed_dest=1 SCOPE=BOTH SID='*';

11:02:51 2007 SQL> ALTER SYSTEM SET db_file_name_convert='/u001/oradata/s006b/','/u001/oradata/s006

/','/u002/oradata/s006b/','/u002/oradata/s006','/u005/oradata/s006b/','/u005/ora

data/s006/','/u007/oradata/s006b/','/u007/oradata/s006/','/a001/oradata/s006b/',

'/a001/oradata/s006/','/a002/oradata/s006b/','/a002/oradata/s006/' SCOPE=SPFILE;

11:02:51 2007 SQL> ALTER SYSTEM SET log_file_name_convert='/u003/oradata/s006b/','/u003/oradata/s00

6/','/u004/oradata/s006b/','/u004/oradata/s006/' SCOPE=SPFILE;

11:02:52 2007 SQL> ALTER SYSTEM SET fal_server='(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(

HOST=ora-s006b-agb.air.ups.com)(PORT=1522)))

(CONNECT_DATA=

(SERVICE_NAME=dg_s006b_XPT.air.ups.com)(SERVER=dedicated)))' SCOPE=BOTH;

11:02:52 2007 SQL> ALTER SYSTEM SET fal_client='(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(

HOST=ora-s006-asc.air.ups.com)(PORT=1522)))

(CONNECT_DATA=(SERVICE_NAME=dg_s006_XPT.air.ups.com)

(INSTANCE_NAME=s006)(SERVER=dedicated)))' SCOPE=BOTH;

11:03: SQL> RECOVER MANAGED STANDBY DATABASE DISCONNECT USING CURRENT LOGFILE;

11:03:09 2007 - Completed

Commands on s006b (Standby)

Time

SQL
10:59:43 2007 SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

10:59:43 ORA-16037: user requested cancel of managed recovery operation

Managed Standby Recovery not using Real Time Apply

Recovery interrupted!

10:59:46 2007 – Completed ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL

10:59:46 2007 If media recovery active, switchover will wait 900 seconds

SwitchOver after complete recovery through change 2044717010677

10:59:46 2007 SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WAIT WITH SESSION SHUTDOWN;

10:59:46 2007 ALTER DATABASE SWITCHOVER TO PRIMARY (s006b)

10:59:47 2007 – completed ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WAIT WITH SESSION SHUTDOWN

SQL> Shutdown immediate

11:00:05 2007 - Shutting down instance: further logons disabled

11:00:07 2007 - alter database CLOSE NORMAL

11:00:07 2007 alter database DISMOUNT Completed: alter database DISMOUNT

11:00:23 2007 Shutting down Data Guard Broker processes (DMON)

11:01:31 2007 SQL> Startup

11:01:31 2007 – Starting ORACLE instance (normal)

11:01:51 2007 DMON started with pid=13, OS id=21324

11:01:51 2007 alter database mount

11:01:55 2007

Database mounted in Exclusive Mode

Completed: alter database mount

11:01:58 2007 Starting Data Guard Broker (DMON)

11:02:50 2007 SQL> ALTER SYSTEM SET standby_archive_dest='' SCOPE=BOTH SID='s006b';

11:02:50 2007 SQL> ALTER SYSTEM SET log_archive_dest_1='location="/b001/oradata/s006b/archlog_backup/"','

valid_for=(ONLINE_LOGFILE,ALL_ROLES)' SCOPE=BOTH SID='s006b';

11:02:51 2007 SQL> ALTER SYSTEM SET log_archive_dest_state_1='ENABLE' SCOPE=BOTH SID='s006b';

11:02:54 2007 SQL> ALTER SYSTEM SET log_archive_dest_2='service="(DESCRIPTION=

(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)

(HOST=ora-s006-asc.air.ups.com)(PORT=1522)))(CONNECT_DATA=

(SERVICE_NAME=dg_s006_XPT.air.ups.com)(INSTANCE_NAME=s006)

(SERVER=dedicated)))"',' LGWR SYNC AFFIRM delay=0 OPTIONAL max_failure=0 max_connections=1 reopen=300 db_unique_name="dg_s006" register net_timeout=180 valid_for=(online_logfile,primary_role)' SCOPE=BOTH;

11:02:54 2007 SQL> ALTER SYSTEM SET log_archive_dest_state_2='ENABLE' SCOPE=BOTH;

11:02:54 2007 SQL> ALTER DATABASE OPEN

11:03:46 2007 Completed: ALTER DATABASE OPEN

11:03:47 2007 SQL> ALTER SYSTEM SET log_archive_trace=0 SCOPE=BOTH SID='s006b';

11:03:47 2007 SQL> ALTER SYSTEM SET log_archive_format='%t_%s_%r.dbf' SCOPE=SPFILE SID='s006b';

11:03:47 2007 SQL> ALTER SYSTEM SET standby_archive_dest='' SCOPE=BOTH SID='s006b';

11:03:47 2007 SQL> ALTER SYSTEM SET standby_file_management='AUTO' SCOPE=BOTH SID='*';

11:03:47 2007 SQL> ALTER SYSTEM SET archive_lag_target=0 SCOPE=BOTH SID='*';

11:03:47 2007 SQL> ALTER SYSTEM SET log_archive_max_processes=2 SCOPE=BOTH SID='*';

11:03:47 2007 SQL> ALTER SYSTEM SET log_archive_min_succeed_dest=1 SCOPE=BOTH SID='*';

11:03:47 SQL> ALTER SYSTEM SET db_file_name_convert='/u001/oradata/s006/','/u001/oradata/s006b

/','/u002/oradata/s006/','/u002/oradata/s006b','/u005/oradata/s006/','/u005/orad

ata/s006b/','/u007/oradata/s006/','/u007/oradata/s006b/','/a001/oradata/s006/','

/a001/oradata/s006b/','/a002/oradata/s006/','/a002/oradata/s006b/' SCOPE=SPFILE;

11:03:48 2007 SQL> ALTER SYSTEM SET log_file_name_convert='/u003/oradata/s006/','/u003/oradata/s006

b/','/u004/oradata/s006/','/u004/oradata/s006b/' SCOPE=SPFILE;

11:03:48 2007 SQL> ALTER SYSTEM SET log_archive_dest_2='service="(DESCRIPTION=(ADDRESS_LIST=(ADDRES

S=(PROTOCOL=TCP)(HOST=ora-s006-asc.air.ups.com)(PORT=1522)))(CONNECT_DATA=(SERVI

CE_NAME=dg_s006_XPT.air.ups.com)(INSTANCE_NAME=s006)(SERVER=dedicated)))"',' LGWR SYNC AFFIRM delay=0 OPTIONAL max_failure=0 max_connections=1 reopen=300 db_unique_name="dg_s006" register net_timeout=180 valid_for=(online_logfile,primary_role)' SCOPE=BOTH;

11:03:48 2007 SQL> ALTER SYSTEM SET log_archive_dest_state_2='ENABLE' SCOPE=BOTH;

11:04:00 2007 Completed

Appendix D. Show Command Examples and Trouble Shooting

DGMGRL> SHOW DATABASE dg_t921 'StatusReport';

STATUS REPORT

 INSTANCE_NAME SEVERITY ERROR_TEXT

 t921 ERROR ORA-16737: the redo transport service for standby database "dg_t921b" has an error

 t921 WARNING ORA-16714: the value of property ArchiveLagTarget is inconsistent with the database setting

 t921 WARNING ORA-16715: redo transport-related property LogXptMode of standby database "dg_t921b" is inconsistent

Solution: Edit property ArchiveLagTarget with the correct value.
EDIT DATABASE dg_t921 SET PROPERTY ArchiveLagTarget = 0;

Property "archivelagtarget" updated

SHOW DATABASE dg_t921 'InconsistentLogXptProps';

INCONSISTENT LOG TRANSPORT PROPERTIES

 INSTANCE_NAME STANDBY_NAME PROPERTY_NAME MEMORY_VALUE BROKER_VALUE

 t921 dg_t921b LogXptMode (missing SRLs) SYNC

Problem is missing standby redo logs. Solution: Create Standby redo logs on standby database.
DGMGRL> show database "dg_s006" InconsistentProperties

INCONSISTENT PROPERTIES

 INSTANCE_NAME PROPERTY_NAME MEMORY_VALUE SPFILE_VALUE BROKER_VALUE

 s006 DbFileNameConvert
/u001/oradata/s006b/, /u001/oradata/s006/, /u002/oradata/s006b/, /u002/oradata/s006/, /u005/oradata/s006b/, /u005/oradata/s006/, /u006/oradata/s006b/, /u006/oradata/s006/, /u007/oradata/s006b/, /u007/oradata/s006/, /a001/oradata/s006b/, /a001/oradata/s006/, /a002/oradata/s006b/, /a002/oradata/s006/

/u001/oradata/s006b/,/u001/oradata/s006/,/u002/oradata/s006b/,/u002/oradata/s006,/u005/oradata/s006b/,
/u005/oradata/s006/,/u007/oradata/s006b/,/u007/oradata/s006/,/a001/oradata/s006b/,/a001/oradata/s006/,/a002/oradata/s006b/,/a002/oradata/s006/ /u001/oradata/s006b/, /u001/oradata/s006/, /u002/oradata/s006b/, /u002/oradata/s006, /u005/oradata/s006b/, /u005/oradata/s006/, /u007/oradata/s006b/, /u007/oradata/s006/, /a001/oradata/s006b/, /a001/oradata/s006/, /a002/oradata/s006b/, /a002/oradata/s006/

Solution: Edit property DbFileNameConvert to be consistent between memory / Spfile and Broker value.
References
1. Oracle® Data Guard, Concepts and Administration, 10g Release 2 (10.2), Part I, 3.1 - Creating a Physical Standby Database, Part I, 4.1 - Creating a Logical Standby Database, Product: B14239-04, March 2006
2. Oracle® Data Guard Broker, 10g Release 2 (10.2) Product: B14230-02,

3. Oracle® Enterprise Manager, Grid Control Quick Installation Guide for Linux x86_64, 10g Release 3 (10.2.0.3), Product: E10054-02

4. Installing Oracle Enterprise Manager 10g Grid Control Release 3 on Linux x86 (http://www.oracle.com/technology/pub/articles/smiley-grid10gr3-install.html)

5. Oracle® Enterprise Manager, Grid Control Quick Installation Guide for HP-UX Itanium, 10g Release 3 (10.2.0.3), Product: E10081-01

6. Using Recovery Manager with Oracle Data Guard in Oracle Database 10g, Oracle White Paper, September 2005

7. Data Guard Broker High Availability, Note: 275977.1, Type = Bulletin, Published January 11, 2006.

31

Paper #

_1265123283.vsd
Standby
Database (S006)

Primary
Database (S006b)

_1265376005.vsd
Primary
Database A (P900)

Standby
Database B (P900b)

Standby
Database C (P900c)

Primary Site A (New York City)

Alternate Site B (Chicago)

Alternate Site C (Denver)

_1265457242.vsd

_1265468640.vsd
Primary
database

Standby
database

Log Transport Services

Archived Redo Logs

DMON

_1265378788.vsd
Server

Primary
Database A (P900)

Standby
Database B (P900b)

Standby
Database C (P900c)

DMON

Primary Site A (New York City)

Alternate Site B (Chicago)

Alternate Site C (Denver)

_1265375758.vsd
Standby
Database A (P900)

Standby
Database B (P900b)

Primary
Database C (P900c)

Primary Site A (New York City)

Alternate Site B (Chicago)

Alternate Site C (Denver)

_1265125499.vsd
Standby
Database (S006)

Primary
Database (S006b)

_1265016350.vsd
Server

Primary
Database A (P900)

Standby
Database B (P900b)

Standby
Database C (P900c)

Primary Site A (New York City)

Alternate Site B (Chicago)

Alternate Site C (Denver)

_1265122660.vsd
Primary
Database (S006)

Standby
Database (S006b)

_1264959613.vsd
Primary
Database A (P900)

Standby
Database B (P900b)

Standby
Database C (P900c)

Primary Site A (New York City)

Alternate Site B (Chicago)

Alternate Site C (Denver)

