DBA

Data Pump You Up!

Robert Bond, JP Morgan-Chase

Introduction

In Oracle10g, Data Pump was introduced as a faster, feature-rich replacement of the classic Export/Import utility. The new Data Pump infrastructure provides better scalability, higher performance, flexible monitoring and control. Moreover, Oracle11g adds several new features for Partitioning, Compression, and Encryption to name a few.
Data Pump can be used to supplement your backup strategy with logical backups, refresh data from a Production environment to Development/Test environments, perform database data migrations and upgrades, and populate a data warehouse.

Major topics covered in this paper include:

· How Data Pump is superior in performance and features over standard export/import utilities.
· Capabilities of Data Pump including 11g improvements.

· How to interactively execute and monitor Data Pump jobs.
First, we will review the architectural components of Data Pump.
Data Pump Components

The diagram in Figure 1 depicts the major components of the Data Pump architecture.

[image: image3.png]
Figure 1. Data Pump Architecture
DBMS_DATAPUMP engine – this is the PL/SQL package that provides the necessary API for high-speed import and export utilities for bulk data and metadata loading/unloading. This package is exposed and available for use like any PL/SQL package.
External Table API – utilizes a new ORACLE_DATAPUMP access driver that provides external tables with read and write access using the Direct Path API.

Direct Path API (DPAPI) – this is a new streaming interface. Basically, row data is read or written to dump file sets with DPAPI, which minimizes the necessary data parsing and conversion during load and unload time.

DBMS_METADATA API – metadata support is offered via the DBMS_METADATA PL/SQL package. This package provides database object definition support to Data Pump worker processes.

Export and Import Data Pump clients – new export (expdp) and import (impdp) clients make thin layer connections to the DBMS_DATAPUMP package to initiate and monitor Data Pump operations.
External clients – Oracle technologies such as transportable tablespaces, logical standby databases, streams-based replication, and Enterprise Manager can also benefit from the Data Pump infrastructure. SQL*Plus may also be used as a client for operational support with the DBMS_DATAPUMP package.

Data Pump automatically selects the best access method to table data, either Direct Path API or External Table Services API. Both methods support the same external data representation. Therefore, it is possible for Data Pump to choose DPAPI for export and External Table Services API for import, and vice-versa. DPAPI is faster, but cannot be used with clustered tables, tables with encrypted columns, and the QUERY parameter is used - to name a few. Refer to the Oracle documentation for more details.
Additionally, Data Pump can be used to transfer data over a network link or via datafile copying.
Data Pump is a completely new server-based infrastructure for loading/unloading data quickly. Next, we will look at the main entities involved during Data Pump export/import operations.
Data Pump Entities
There are three main entities involved in a Data Pump operation. They are the Master Control Process, Master Table, and Worker Processes.

Master Control Process
This process is responsible for managing the export and import process when a job is defined. Each job has its own Master Control Process instantiated when a job is started. It creates the Master Table and Worker Processes.
Master Table
The Master Table maintains job state, description, restart, dumpfile, and other information while the job runs. As operations occur, the Master Control Process and Worker Processes feed this data into the Master Table. The Master Table takes on the name supplied from the JOB_NAME parameter. If none is provided, a system-generated name is used.

At the end of an export operation, the Master Table is loaded into the dumpfile set. At the beginning of an import operation, the Master Table is unloaded from the dumpfile set and created in the current schema. At the end of both import and export operations, the Master Table is removed.
Worker Processes
The Worker Processes unload or load metadata and data, as required by the user-specified job parameters. Worker Processes use the DBMS_METADATA API for all metadata loading and unloading. The number of Worker Processes the Master Control Process spawns depends on the degree of parallelism specified by the PARALLEL parameter, as permitted by the Oracle Database Server Enterprise Edition.

Performance and Features Compared with Classic Export/Import
Data Pump provides the following advantages compared with the classic export/import utility.

· Features

· Interactive Mode – enables monitoring and control of Data Pump jobs, including restarting jobs, modifying parallelism, and adding dumpfiles.
· Data Filtering – at a granular level, objects can be included or excluded; Data can be filtered with the Query parameter both on import and export.
· Network Import – an import can be performed without using dumpfile sets.
· Exposed API – DBMS_DATAPUMP pl/sql package can be used in programs to start/stop/monitor jobs.
· OEM – Enterprise Manager can submit, control, and monitor Data Pump jobs; OEM can also monitor a job that was initiated outside of OEM.
· Performance

· Server-based – processing occurs on the server alleviating client resources and network bottlenecks.
· Parallelism – Enterprise Edition of the database server permits parallel worker processes, whereas classic export/import was only single-threaded.
· Faster export – Data Pump exports are faster, with the exception of very small data sets.
· Faster import – Data Pump imports utilizing Direct Path are dramatically faster than classic imports.
Performance Example
Figure 2 shows the results of export/import tests where the elapsed times in seconds were measured for various table sizes. Measurements were taken for Data Pump export/import and Original export/import trials. The export trials show classic export as faster for the smaller 10Mb and 100Mb data sizes, due to the overhead Data Pump has in setting up the master control process, master table, and worker process. However, for larger sizes classic export ran 58%-189% longer.
Classic import ran from 10x-40x longer than Data Pump import for the 3 larger data set sizes. The PARALLEL Data Pump parameter was not used in the performance test, but could provide in even faster Data Pump performance for the larger data sets.

Other papers have reported performance benefits of Data Pump exports running about twice as fast, while Data Pump imports are generally 15x-40x faster.
	Method
	10Mb
	100Mb
	1Gb
	10Gb

	Data Pump Export Direct Path
	34
	36
	89
	476

	Original Export Direct Path
	7
	15
	141
	1377

	
	
	
	
	

	Data Pump Import Direct Path
	16
	22
	90
	778

	Original Import Direct Path
	17
	243
	2841
	32840

Figure 2. Elapsed Time Comparison Between Data Pump and Classic Export/Import
Data Pump Basics

This section covers the basics in running Data Pump jobs.

First, a directory object is needed because dumpfile sets are written and read on the server. The directory is also needed for the logfile and for SQLfiles. The directory object provides a level of security for the dumpfile sets on the server. A default DATA_PUMP_DIR directory object is created and available to privileged users – those with full export or import privileges.
Here, a directory object, ‘dir1’, is created corresponding to a physical location, ‘/exports’.
create DIRECTORY dir1 as ‘/exports’;
Next, privileges to read from and write to the directory object are granted to a couple of users.
grant read, write on DIRECTORY dir1 to user1, user2;
Finally, full export and import privileges are granted to a couple of users. Otherwise, each user would be limited to exports/imports only within her own schema. Be very careful to limit these privileges.

grant exp_full_database, imp_full_database to user1, user2;
Data Pump supports the following export/import types: Full, Tablespace, Schema, Table, Transportable Tablespace. The default export type is a Schema export. For import, the default is a Full import.
One can invoke Data Pump export or import via Command line, Parameter files, or Interactive commands. Parameter files are recommended when parameter values contain special symbols such as quotation marks.
Here is an example of a schema export.
expdp user1/pw Directory=dir1 Schemas=user1 Dumpfile=user1%U.dmp Parallel=4 Job_name=J
Let’s go through the parameters.

The command ‘expdp’ is issued followed by User ID & Password.

The Directory, ‘dir1’, we defined earlier is specified.

The Dumpfile is named with a template using a substitution variable, ‘%U’. It provides an incrementing counter for file naming. This is useful when using the PARALLEL parameter and when dumpfile sizes are limited with the FILESIZE parameter.
Parallel=4 specifies 4 Worker processes (or I/O server processes) should be created. This parameter requires Enterprise edition. Oracle recommends setting Parallel to a number less than or equal to the number of files in the dumpfile set, and less than or equal to twice the number of server CPUs.

Finally, the Job_Name is specified as ‘J’. Otherwise, Job_Name defaults to a system-generated name.
Next is an example of a schema import.
impdp user1/pw Directory=dir1 Table_Exists_Action=truncate \
 Dumpfile=user1%U.dmp Parallel=4 Job_name=J

The command ‘impdp’ is issued followed by User ID & Password.

The Directory, ‘Dir1’, is specified.
Table_Exists_Action was set to ‘truncate’, which truncates tables before importing data.
The Dumpfile is named using a substitution variable, ‘%U’.

Parallel=4 specifies 4 Worker processes should be created.

Finally, a Job_Name is specified as ‘J’. It does not have to correspond to the job name used in the Export.

Network Link

Data Pump provides a NETWORK_LINK parameter to perform export/import over a database link. Export and import work similarly, except import does not require creation of a dumpfile set.

Here is an example of an import using NETWORK_LINK. The remote_db_link database link has been created as a public database link connecting to the user1 schema on the remote source database.
impdp user1/pw Directory=dir1 Table_Exists_Action=truncate \

 NETWORK_LINK=remote_db_link Tables=tbl1

The example copies the tbl1 table from the remote database. Keep in mind copying data over a network is not as fast as using dumpfile sets, but it can be useful for limited amounts of data. Also, note that current user database links are not supported.
Recapping this section, we have performed a schema export, a schema import, and an import over a network link. Next, let’s look at ways to transform data.
Transformation
This section covers a few examples of how Data Pump can transform data during export and import.
· Filter – database objects can be filtered on export and import.
· Remap – on import, one can remap data to a different schema, tablespace, datafile, or table name.
· Transform – objects can be imported with different storage specifications.
Here is a comprehensive example.

impdp user2/pw Directory=dir1 Job_name=J \

 Schemas=user1 Dumpfile=user1%U.dmp \

 Table_exists_action=replace \

 Remap_schema=user1:user2 \

 Remap_tablespace=user1_ts:user2_ts \

 Transform=segment_attributes:N

The first two lines are familiar – import a specific schema from a dumpfile set.

The Table_Exists_Action could be SKIP, APPEND, TRUNCATE, or REPLACE. Replace was specified, which drops and re-creates existing tables.

Remap_Schema signifies data from a source schema ‘user1’ should be loaded into a different target schema ‘user2’.

Remap_tablespace likewise remaps data from the source tablespace ‘user1_ts’ into a different target tablespace ‘user2_ts’.

Finally, we have a TRANSFORM parameter. With Segment_Attributes set to N, physical attributes and storage attributes are not included during import. This is beneficial when you do not want to use the same tablespace or storage sizes as the source object. Other TRANSFORM options exist for STORAGE, OID, & PCTSPACE to manage other storage attributes and Object ID assignment.
Next, we’ll look at filtering. One can filter on Schemas, Tablespaces, Tables, Metadata (with Include/Exclude), and Data (with Query & Sample).
First, export 2 schemas – User1 & User2.
expdp user1/pw Schemas=user1, user2 \
 Dumpfile=dir1:exp%U.dmp \
 Estimate=Statistics Version=10.2.0
Dumpfile is specified with the Directory, ‘dir1’, instead of using the Directory parameter.

The parameter ESTIMATE is specified to use object statistics instead of the default Blocks. ESTIMATE designates the estimation method used to estimate the size of the export dumpfile set. By default, ESTIMATE uses the BLOCKS method; here we use the cost-based-optimizer STATISTICS.
The parameter VERSION specifies (COMPATIBLE|LATEST|version#) level of compatibility for the dumpfile set. It can be used to created a dumpfile set that is compatible with an earlier version of 10g.
Next, data is imported with filters.

impdp user1/pw Directory=dir1 Schemas=user1 \
 Dumpfile=Dir1:exp%U.dmp \
 Exclude=GRANT Exclude=TRIGGER

The import example first filters on the User1 schema – User2 is excluded.

Next, Grants & Triggers are excluded from the import.

There is also a corresponding INCLUDE parameter. However, INCLUDE and EXCLUDE are mutually exclusive parameters. When either INCLUDE or EXCLUDE is used, it also filters all dependent objects of the object that is filtered. For example, if a table is specified in an INCLUDE, then its dependent objects such as indexes are automatically included. Three views list objects that can be used with INCLUDE and EXCLUDE. They are Table_Export_Objects, Schema_Export_Objects, and Database_Export_Objects.
Query and Sample

Other methods to filter data include the QUERY and SAMPLE parameters. SAMPLE enables you to specify a percentage of blocks to be exported. This is useful when one needs a small representation of production data in development or test environments.
Here is an example of the QUERY parameter to export rows from the tbl1 table that have a message type=1.
expdp user1/pw Schemas=user1 Dumpfile=dir1:exp%U.dmp \
 Tables=tbl1, tbl2 Query=tbl1:’ "where message_type=1" ‘
The Query parameter relates to the entire export, unless it specifies the table name as part of the QUERY value. In the example, tbl2 will be exported in its entirety, but only rows in tbl1 that match the ‘message_type=1’ criteria will be unloaded.
Submitting and Monitoring Jobs
Data Pump’s Interactive Mode provides the ability to monitor and control data pump jobs including:

· Restarting a stopped job

· Obtaining job status

· Temporarily stopping a job

· Permanently killing a job

· Adding/Removing resources

Overview of Interactive Commands

A summary of the commands available in interactive mode is listed in Figure 3. Interactive commands can be listed by running either “expdp –help”, “impdp –help”, or by typing “help” while in interactive mode.
The following commands are valid while in interactive mode.

Note: abbreviations are allowed

Command Description

--

ADD_FILE* Add dumpfile to dumpfile set.

CONTINUE_CLIENT Return to logging mode. Job will be re-started if idle.

EXIT_CLIENT Quit client session and leave job running.

FILESIZE* Default filesize (bytes) for subsequent ADD_FILE commands.

HELP Summarize interactive commands.

KILL_JOB Detach and delete job.

PARALLEL Change the number of active workers for current job.

 PARALLEL=<number of workers>.

REUSE_DUMPFILES* Overwrite destination dump file if it exists (N).

START_JOB Start/resume current job.

STATUS Frequency (secs) job status is to be monitored where

 the default (0) will show new status when available.

 STATUS[=interval]

STOP_JOB Orderly shutdown of job execution and exits the client.

 STOP_JOB=IMMEDIATE performs an immediate shutdown

 of the Data Pump job.

Note: * indicates a command only available with expdp.
Figure 3. Interactive Mode Commands resulting from “expdp –help”
Two examples are covered in this section. The first is an example of Monitoring and Controlling a Data Pump export job. The second example demonstrates an import job that requires intervention to add resources before the job can complete.
Example: Monitoring and Controlling a Data Pump Export Job
First, submit an export job:
expdp user1/pw Schemas=user1 Directory=dir1 Dumpfile=expuser1.dmp Job_name=J

Export: Release 11.1.0.6.0 - 64bit Production on Saturday, 23 February, 2008 13:18:38

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password:

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

Starting "USER1"."J": user1/******** Schemas=user1/******** Directory=Dir1 Dumpfile=expuser1/********.dmp Job_name=J

Estimate in progress using BLOCKS method...

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

Total estimation using BLOCKS method: 7.171 GB

Processing object type SCHEMA_EXPORT/USER

Processing object type SCHEMA_EXPORT/SYSTEM_GRANT

Processing object type SCHEMA_EXPORT/ROLE_GRANT

Processing object type SCHEMA_EXPORT/DEFAULT_ROLE

Processing object type SCHEMA_EXPORT/TABLESPACE_QUOTA

Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA

Processing object type SCHEMA_EXPORT/TABLE/TABLE
While the job is running, enter Interactive mode either by:

· Entering control-C (^c) from the same session, or

· Attaching to the job from another session, with “expdp user1/pw attach=J”

The job_name is required when attaching from another session.

^C

Export> status

Job: J

 Operation: EXPORT

 Mode: SCHEMA

 State: EXECUTING

 Bytes Processed: 0

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 4,096

Worker 1 Status:

 Process Name: DW01

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE

 Completed Objects: 4

 Worker Parallelism: 1
From a sql*plus session, one can verify more Worker processes have spawned:

SQL> select job_name, operation, job_mode, state from user_datapump_jobs;

JOB_NAME OPERATION JOB_MODE STATE
--------------------- ------------------------ --------------------- -----------------

J EXPORT SCHEMA EXECUTING
SQL> select OWNER_NAME, JOB_NAME, SESSION_TYPE from dba_datapump_sessions;

OWNER_NAME JOB_NAME SESSION_TYPE

------------------------------ ---------------------- --------------------------------------
USER1 J MASTER

USER1 J WORKER
Type ‘exit_client’ to quit the session and leave the job running.

Export> exit_client

Re-attach to the job in interactive mode:

$ expdp user1 attach=J

Export: Release 11.1.0.6.0 - 64bit Production on Saturday, 23 February, 2008 13:19:34

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password:

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

Job: J

 Owner: USER1

 Operation: EXPORT

 Creator Privs: TRUE

 GUID: 46D85E45C4615CDDE0440000779DB0C5

 Start Time: Saturday, 23 February, 2008 13:18:41

 Mode: SCHEMA

 Instance: bb003

 Max Parallelism: 1

 EXPORT Job Parameters:

 Parameter Name Parameter Value:

 CLIENT_COMMAND user1/******** Schemas=user1/******** Directory=Dir1 Dumpfile=expuser1/********.dmp Job_name=J

 State: EXECUTING

 Bytes Processed: 1,333,610,752

 Percent Done: 17

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 1,333,665,792

Worker 1 Status:

 Process Name: DW01

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 2

 Total Objects: 7

 Worker Parallelism: 1
Check current job status:

Export> status

Job: J

 Operation: EXPORT

 Mode: SCHEMA

 State: EXECUTING

 Bytes Processed: 1,333,610,752

 Percent Done: 17

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 1,333,665,792

Worker 1 Status:

 Process Name: DW01

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 2

 Total Objects: 7

 Completed Rows: 1,989,274

 Worker Parallelism: 1
Type ‘stop_job=immediate’ to stop the job, but enable it to be restartable.

Export> stop_job=immediate

Are you sure you wish to stop this job ([yes]/no): yes

Re-attach to the job in interactive mode:

$ expdp user1 attach=J

Export: Release 11.1.0.6.0 - 64bit Production on Saturday, 23 February, 2008 13:20:01

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password:

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

Job: J

 Owner: USER1

 Operation: EXPORT

 Creator Privs: TRUE

 GUID: 46D85E45C4615CDDE0440000779DB0C5

 Start Time: Saturday, 23 February, 2008 13:20:06

 Mode: SCHEMA

 Instance: bb003

 Max Parallelism: 1

 EXPORT Job Parameters:

 Parameter Name Parameter Value:

 CLIENT_COMMAND user1/******** Schemas=user1/******** Directory=Dir1 Dumpfile=expuser1/********.dmp Job_name=J

 State: IDLING

 Bytes Processed: 1,333,610,752

 Percent Done: 17

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 1,333,665,792

Worker 1 Status:

 Process Name: DW01

 State: UNDEFINED

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 2

 Total Objects: 7

 Completed Rows: 13,906,024

 Worker Parallelism: 1

Change Parallelism to 4, maximum dumpfile size to 2000m, and add additional dumpfiles.

Export> parallel=4

Export> filesize=2000m

Export> add_file=expuser1_addfile_%U.dmp

Export> status

Job: J

 Operation: EXPORT

 Mode: SCHEMA

 State: IDLING

 Bytes Processed: 1,333,610,752

 Percent Done: 17

 Current Parallelism: 4

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1_addfile_%u.dmp

 size: 2,097,152,000

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 1,333,665,792

 Dump File: /orcl4/dump/expuser1_addfile_01.dmp

 size: 2,097,152,000

 bytes written: 4,096

Worker 1 Status:

 Process Name: DW01

 State: UNDEFINED

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 2

 Total Objects: 7

 Completed Rows: 13,906,024

 Worker Parallelism: 1

Restart the job. Notice there are 4 worker processes assigned corresponding to the Parallel value.
Export> start_job

Set the refresh time for status updates to 30 seconds.

Export> status=30

Job: J

 Operation: EXPORT

 Mode: SCHEMA

 State: EXECUTING

 Bytes Processed: 1,333,610,752

 Percent Done: 17

 Current Parallelism: 4

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1_addfile_%u.dmp

 size: 2,097,152,000

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 1,333,669,888

 Dump File: /orcl4/dump/expuser1_addfile_01.dmp

 size: 2,097,152,000

 bytes written: 4,096

 Dump File: /orcl4/dump/expuser1_addfile_02.dmp

 size: 2,097,152,000

 bytes written: 4,096

Worker 1 Status:

 Process Name: DW01

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL5

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 1

 Total Objects: 7

 Completed Rows: 5,961,493

 Worker Parallelism: 1

Worker 2 Status:

 Process Name: DW02

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL4

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 1

 Total Objects: 7

 Completed Rows: 3,975,376

 Worker Parallelism: 1

Worker 3 Status:

 Process Name: DW03

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 1

 Total Objects: 7

 Completed Rows: 7,947,622

 Worker Parallelism: 1

Worker 4 Status:

 Process Name: DW04

 State: WORK WAITING
From a sql*plus session, one can verify more Worker processes have spawned:

SQL> select OWNER_NAME, JOB_NAME, SESSION_TYPE from dba_datapump_sessions;

OWNER_NAME JOB_NAME SESSION_TYPE

------------------------------ ---------------------- --------------------------------------

USER1 J DBMS_DATAPUMP

USER1 J MASTER

USER1 J WORKER

USER1 J WORKER

USER1 J WORKER

USER1 J WORKER
Return to logging mode:

Export> continue_client

Job: J

 Operation: EXPORT

 Mode: SCHEMA

 State: EXECUTING

 Bytes Processed: 1,333,610,752

 Percent Done: 17

 Current Parallelism: 4

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1_addfile_%u.dmp

 size: 2,097,152,000

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 1,333,669,888

 Dump File: /orcl4/dump/expuser1_addfile_01.dmp

 size: 2,097,152,000

 bytes written: 4,096

 Dump File: /orcl4/dump/expuser1_addfile_02.dmp

 size: 2,097,152,000

 bytes written: 4,096

Worker 1 Status:

 Process Name: DW01

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL5

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 1

 Total Objects: 7

 Completed Rows: 5,961,493

 Worker Parallelism: 1

Worker 2 Status:

 Process Name: DW02

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL4

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 1

 Total Objects: 7

 Completed Rows: 5,961,493

 Worker Parallelism: 1

Worker 3 Status:

 Process Name: DW03

 State: EXECUTING

 Object Schema: USER1

 Object Name: TBL3

 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA

 Completed Objects: 1

 Total Objects: 7

 Completed Rows: 13,906,024

 Worker Parallelism: 1

Worker 4 Status:

 Process Name: DW04

 State: WORK WAITING

Job J has been reopened at Saturday, 23 February, 2008 13:20
The status refreshed every 30 seconds. Ongoing refreshed output has been omitted to save space.

. . exported "USER1"."TBL3" 1.242 GB 16840035 rows

. . exported "USER1"."TBL5" 1.242 GB 16840035 rows

. . exported "USER1"."TBL4" 1.242 GB 16840035 rows

. . exported "USER1"."TBL1" 84.80 MB 1122669 rows

. . exported "USER1"."TBL" 9.434 MB 124741 rows

. . exported "USER1"."TBL6" 1.158 GB 15717366 rows

Finally, the job completed.

Job: J

 Operation: EXPORT

 Mode: SCHEMA

 State: COMPLETED

 Bytes Processed: 6,677,106,249

 Percent Done: 100

 Current Parallelism: 4

 Job Error Count: 0

 Dump File: /orcl4/dump/expuser1_addfile_%u.dmp

 size: 2,097,152,000

 Dump File: /orcl4/dump/expuser1.dmp

 bytes written: 2,756,206,592

 Dump File: /orcl4/dump/expuser1_addfile_01.dmp

 size: 2,097,152,000

 bytes written: 1,333,616,640

 Dump File: /orcl4/dump/expuser1_addfile_02.dmp

 size: 2,097,152,000

 bytes written: 1,343,512,576

 Dump File: /orcl4/dump/expuser1_addfile_03.dmp

 size: 2,097,152,000

 bytes written: 446,242,816

 Dump File: /orcl4/dump/expuser1_addfile_04.dmp

 size: 2,097,152,000

 bytes written: 414,752,768

 Dump File: /orcl4/dump/expuser1_addfile_05.dmp

 size: 2,097,152,000

 bytes written: 382,869,504

Worker 1 Status:

 Process Name: DW01

 State: WORK WAITING

Worker 2 Status:

 Process Name: DW02

 State: WORK WAITING

Worker 3 Status:

 Process Name: DW03

 State: WORK WAITING

Worker 4 Status:

 Process Name: DW04

 State: WORK WAITING

Job "USER1"."J" successfully completed at 13:22:14

In this export example, we showed how to start a job, enter interactive mode, check status, stop a job, change parallelism, add dumpfiles, and restart a job.
Example: Adding Resources for a Data Pump Import Job
This example demonstrates a Data Pump import where there is insufficient tablespace room.
The goal in this example is to import table ‘tbl1’ into the ‘user3’ schema using tablespace ‘ts_small’.
The parameter file ‘impdp_toosmall.par’ contains:

remap_schema=user1:user3

remap_tablespace=ts_data:ts_small

tables=tbl1

directory=dir1

dumpfile=expuser1.dmp, expuser1_addfile_%U.dmp

Start the import:

impdp user3 parfile=impdp_toosmall.par

Import: Release 11.1.0.6.0 - 64bit Production on Saturday, 23 February, 2008 13:25:22

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password:

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

Master table "USER3"."SYS_IMPORT_TABLE_01" successfully loaded/unloaded

Starting "USER3"."SYS_IMPORT_TABLE_01": user3/******** parfile=impdp_toosmall.par

Processing object type SCHEMA_EXPORT/TABLE/TABLE

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

ORA-39171: Job is experiencing a resumable wait.

ORA-01653: unable to extend table USER3.TBL1 by 128 in tablespace TS_SMALL

At this point, the import job went into a resumable wait state. Once the TS_SMALL tablespace was modified to autoextend, the job immediately continued to completion.
. . imported "USER3"."TBL1" 84.80 MB 1122669 rows

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS

Job "USER3"."SYS_IMPORT_TABLE_01" completed with 1 error(s) at 13:34:24
By the way, 3 sessions were used during the import:
SQL> select OWNER_NAME, JOB_NAME, SESSION_TYPE from dba_datapump_sessions;

OWNER_NAME JOB_NAME SESSION_TYPE

------------------------------ -- -----------------------------------

USER3 SYS_IMPORT_TABLE_01 DBMS_DATAPUMP

USER3 SYS_IMPORT_TABLE_01 MASTER

USER3 SYS_IMPORT_TABLE_01 WORKER
In this section, various commands available in Interactive mode to monitor and control Data Pump jobs were highlighted. With these commands you can monitor your Data Pump jobs, throttle jobs to run with re-apportioned resources, suspend jobs, fix problems due to insufficient Tablespace or Dumpfile Space, and restart jobs.
Data Pump via Enterprise Manager
Dump Pump jobs can also be submitted, monitored, and modified from Enterprise Manager. Figure 4 shows the Oracle11g Database Control screen. Navigate to the Data Movement tab (or Maintenance tab in Grid Control), and you will see several options under Move Row Data.
‘Export to Export Files’ is used to define an export job. Likewise, ‘Import from Export Files’ is used to define an import job. The network link option is available with ‘Import from Database’. Finally, one can monitor jobs with ‘Monitor Export and Import Jobs’.
[image: image2.jpg]
Figure 4. Data Pump via OEM

New in 11gR1

This section overviews several new Oracle11g Data Pump features including:
· Compression

· Encryption

· Data Options

· Transportable

· Partition

· Remap Data
Compression

In Oracle11g, one can produce highly compressed dump files with the Data Pump utility. Previously, Data Pump only permitted compression of metadata. The resulting compression size of dump file sets approaches that of the common file compression utilities.

The COMPRESSION parameter of expdp can take on two new values of ‘ALL’ or ‘DATA_ONLY’, in addition to the ‘NONE’ and ‘METADATA_ONLY’ original values.

For example,

expdp user1/password Directory=dir1 Dumpfile=user1%U.dmp COMPRESSION=ALL

will create a dumpfile set for the user1 schema where both metadata and data are compressed – tremendously reducing disk space! This is invaluable considering the growing size of today’s databases.

Encryption

Oracle10g offered the ability to export data columns that were already encrypted via Transparent Data Encryption (TDE), in encrypted form to dumpfile sets. Oracle11g offers a feature to encrypt all the metadata and/or data into dumpfile sets.
For example, to encrypt all the data for schema user1 using an encryption password:

expdp user1/pw Directory=dir1 Dumpfile=expuser1_encrypted%U.dmp \

 Encryption=ALL Encryption_Algorithm=AES256 \

 Encryption_Mode=PASSWORD Encryption_Password=secretpw

For example, to encrypt all the data for schema user1 using TDE, assuming the encryption wallet is open:

expdp user1/pw Directory=dir1 Dumpfile=expuser1_encryptedTDE%U.dmp \

 Encryption=ALL Encryption_Algorithm=AES256 Encryption_Mode=TRANSPARENT
Data Options

The DATA_OPTIONS parameter can take on different values depending on whether the Data Pump operation is export or import. The two values are XML_CLOBS and SKIP_CONSTRAINT_ERRORS.

For export, setting DATA_OPTIONS=XML_CLOBS specifies that XMLType columns will be exported in uncompressed CLOB format as unstructured text.

For import, setting DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS will allow an import to proceed even when there are non-deferred constraint violations, logging rows that cause the violations. Note that deferred constraint violations will always cause an error and rollback the load.

Transportable

Setting TRANSPORTABLE=ALWAYS permits using the transportable option to export metadata for specific tables, partitions, and subpartitions. After the export, one must copy the corresponding datafiles to the target system to complete a successful import. Tablespaces containing the tables, partitions, or subpartitions to be exported must be Read-only mode.

For example, to export the metadata for table ‘tbl1’:

expdp user1/pw Directory=dir1 Dumpfile=expuser1%U.dmp \

 Tables=tbl1 TRANSPORTABLE=ALWAYS

To complete the corresponding import, specifying the required datafiles:

impdp user2/pw Directory=dir1 Dumpfile=expuser1%U.dmp \

 TRANSPORT_DATAFILES=’/orcl4/dbs/user1_data.dbf’ Remap_Schema=user1:user2

The TRANSPORTABLE option adds another valuable tool for quickly copying a table.
Partition

Available for import only, the PARTITION_OPTIONS parameter can be set to departition or merge partitions.
With PARTITION_OPTIONS=DEPARTITION, a partition or subpartition is promoted to an individual table. The new name of the newly promoted table consists of the partition table name plus the subpartition name. You may want to specify ‘EXCLUDE=GRANT’ to avoid errors when there are grants on objects being departitioned.
With PARTITION_OPTIONS=MERGE, all partitions and subpartitions of a partitioned table are combined into one table. If the export was created with the TRANSPORTABLE method, then the MERGE option is not permitted.
For example, to merge a partitioned table ‘tbl1’ into one nonpartitioned table in the user2 schema:

 impdp user2/pw Tables=tbl1 Directory=dir1 Dumpfile=expuser1%U.dmp \

 PARTITION_OPTIONS=merge Remap_schema=user1:user2

Remap Data

The REMAP_DATA parameter enables data to be modified on export or import in order to obscure sensitive information. For example, if you want to refresh employee data from Production to Development, it would be a good idea to mask the social security numbers and salary information. With REMAP_DATA, you can provide a function during export or import to protect the sensitive data columns.

For example, to map all salaries between $25,000 and $50,000, one can employ a function such as:

 function modsal (oldsal in number) return number is

 newsal number;

 begin

 newsal := mod(oldsal,25001) + 25000;

 return newsal;

 end;

The syntax is REMAP_DATA=schema.table.column:package.function

Assuming the modsal function was placed in a package named ‘remap_pkg’, the salary column can be modified with:

expdp user1/pw Directory=dir1 Dumpfile=expuser1%U.dmp Tables=tbl1 \

 Remap_Data=user1.tbl1.salary:user1.remap_pkg.modsal

Summary

In conclusion, we reviewed how well Data Pump performance features compared with classic Export/Import. Data Pump performs from 2x – 40x faster. We also spotlighted several of Data Pump’s capabilities including Compression, Parallelism, and Encryption. Finally, we examined how to run and monitor Data Pump jobs.
Considering performance and flexibility, Data Pump is clearly superior to the classic Export/Import utility and definitely will make the job of moving data in/out of the database easier than ever!
References

· Oracle® Database Utilities 11g Release 1 (11.1), part #B28319-01
· Oracle Database 11g Data Pump: Data Compression, Encryption, and More, Roy F. Swonger, November 2007, Session S291476, http://www28.cplan.com/cc176/catalog.jsp

· Oracle® Database Utilities 10g Release 2 (10.2), part #B14215-01
· Kumar R., Arun, John Kanagaraj, and Richard Stroupe. “Maximizing Data Movement with Oracle Data Pump.” Oracle Database 10g Insider Solutions. SAMS Pub., 2005.

· Speed and Simplify Data Movement, Kimberly Floss, March 2005, http://www.oracle.com/technology/oramag/oracle/05-mar/o25tuning.html
· Supercharging the Pump, Jonathan Gennick, March 2004, http://www.oracle.com/technology/oramag/oracle/04-mar/o24tech_datapump.html

1

 Paper 333

[image: image1]