DBA Backup / Recovery

LogMiner Basics
or How to Pull Your Bacon Out of the Fire
Timothy J. Herring, Boise Inc.
Abstract
This is an introduction to Oracle’s LogMiner; to acquaint DBAs with this tool when they may have never made use of its capabilities. There are times, when as a DBA armed with the multitude of Oracle strategies for pulling a rabbit out of your hat, options are few. LogMiner is an Oracle utility that puts the magic in your hands. It will allow you to pull the bacon out of the fire when rolling the database back may seem like your only option.
Introduction

At too many conferences there are no sessions on LogMiner. LogMiner is your window into the redo logs, to recreate transactions or undo disaster. In direct or indirect ways, mining the redo is the magic of Oracle streams, the standby database and flashback technologies.
LogMiner was introduced in Oracle 8i and has seen many improvements in 9i, 10g and 11g. Having a basic understanding
of LogMiner, setting up the environment, using the packages, simple searching strategies and appropriate use of tool will enable the DBA to add yet another utility to their bag of tricks.

The online redo logs and archived logs are the source of LogMiner’s magic. When a change occurs in the database, entries are written into the log buffer. The log writer process (LGWR) writes the log buffer to the online redo logs. These in turn are written to the archive logs, if the database is in ARCHIVELOG mode, by the archiver process (ARC0). The redo logs and archived logs contain redo and undo information that LogMiner can translate into a usable form for the DBA.

[image: image1.emf]Database

Archive LogREDO Log

Log Buffer

change

LGWR

ARC0

Basic Flow of a Change into the REDO and Archive Logs

Before diving into the use of LogMiner, the DBA should be familiar with the basics of Oracle backup and recovery. Familiarity with archive log mode will add to your ability to find the SQL you are looking for.
The objectives of this paper are to layout how to set up and use LogMiner; cover some basic searching strategies, and to address LogMiner’s appropriate use.
Setting Up Logminer

The basics of LogMiner exemplify the “KISS” method, Keep It Short & Simple. With a minimum number of commands you can make use of LogMiner. A few definitions are in order:
Source Database – The database that produces the redo log files you want to analyze.

Mining Database – The database LogMiner uses when you perform the analysis.

LogMiner Dictionary – Used to provide object attributes instead of internal object IDs for tables and columns. The dictionary can be a flat file (8i), dictionary extracted to redo logs(9i), online dictionary catalog(9i).

REDO Log Files – Contain the changes to the database or the redo database dictionary.

Prerequisites for using LogMiner
There are several prerequisite conditions for the use of LogMiner, archivelog mode must be enabled, a utl_file_directory must be set, the LogMiner dictionary should be enabled / specified and supplemental logging should be considered.
· The database must be in archivelog mode. To check if the database is in archivelog mode issue this statement:

SQL> archive log list;
Database log mode Archive Mode

Automatic archival Enabled

Archive destination /app/oracle/admin/BPRD/arch/BPRD

Oldest online log sequence 50856

Next log sequence to archive 50863

Current log sequence 50863
· If you are using a flat file dictionary, the utl_file directory must be specified and set to a valid directory. To check issue this statement:

SQL> show parameter utl_file_dir;

NAME TYPE VALUE

----------------------------- ----------- ------------------------------

utl_file_dir string /app/oracle/admin/BPRD/logs

If the parameter is not set, change it in the init.ora and set it in the spfile – this will require a database bounce.

SQL> alter system set utl_file_dir=’/app/oracle/admin/BPRD/logs’ scope=both;

· The LogMiner dictionary must be enabled or specified. As of Oracle 9i, you have three choices for the LogMiner dictionary – online, redo or flat file. Since this paper deals specifically with LogMiner Basics, using KISS, we will only address creation of a flat file dictionary. Perform this step if there is no existing dictionary file, objects have changed or when new objects are added (an existing LogMiner dictionary has gone “stale”).

The dictionary file must be created from the same database as the redo logs to be analyzed.

The source must be the same platform, have the same block size and character set as the analyzing instance, (if you wish to analyze in a different instance). To create the dictionary file, connect as SYS, execute the build package:

SQL> EXECUTE dbms_logmnr_d.build ('lm_BPRD_logdict.ora','/app/oracle/admin/BPRD/logs');
 dictionary name location (utl_file_dir)
· Supplemental Logging Note
As of Oracle 10g, there is a note in the setup of LogMiner that states, “You must enable supplemental logging prior to generating log files that will analyzed by LogMiner.” To see if supplemental logging is enabled, issue this statement:
SQL> select supplemental_log_data_min from v$database;

SUPPLEME

NO

To turn on minimal supplemental logging, issue this statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
This additional overhead may not be necessary:

From Metalink Note 291686.1: “In release 9.2 and 10g By default, Oracle Database does not provide any supplemental logging, which means that the following LogMiner features are NOT supported by default:”
- Index clusters, chained rows, and migrated rows
- Direct-path inserts (also require that ARCHIVELOG mode be enabled)
- Extracting the LogMiner dictionary into the redo log files
- DDL tracking
- Generating SQL_REDO and SQL_UNDO with identification key information
- LONG and LOB data types
Not using supplemental logging comes with a sacrifice. This is the simplest use of LogMiner, so we will skip this logging.
Using Logminer

There are only a few simple steps to use LogMiner:

Specify the REDO logs

Start the analysis

Query the logs

Stop the analysis

The Logs to be Mined

If the REDO logs needed for analysis have been bundled up by RMAN or a third party tool such as BMC’s SQL-Backtrack, restore the .ARC logs that have been expired out of the catalog (for SQL-Backtrack) to the analysis directory of your choice.

Specify Log Files for Analysis

You can specify online or archived log files. You identify the logs by making calls to the dbms_logmnr package. To create a new list, disregarding files supplied before, supply the NEW argument. You use this call to add one file to the list.

Connect as SYS

For a single new file, or a new set of files:

SQL> EXECUTE dbms_logmnr.add_logfile('/app/oracle/admin/BPRD/arch/BPRD_3125.ARC',dbms_logmnr.NEW);
To add additional files: (this call can be repeated for additional logs)
SQL> EXECUTE dbms_logmnr.add_logfile('/app/oracle/admin/BPRD/arch/BPRD_3126.ARC',dbms_logmnr.ADDFILE);
To review the log files to be analyzed run this query:

SQL> SELECT db_name, thread_sqn, filename FROM v$logmnr_logs;
Starting the Analysis
Starting LogMiner is a simple call to a stored package. Connect again as SYS:

SQL>EXECUTE dbms_logmnr.start_logmnr (dictfilename=>, '/app/oracle/admin/BPRD/logs/lm_BPRD_logdict.ora');
Querying the logs

The contents of the log files are now available to analyze in a view, v$logmnr_contents. Connect as SYS:

Confirm you set up LogMiner correctly by running this query:

SQL> SELECT seg_name, operation FROM v$logmnr_contents WHERE rownum <= 10;
One way to review the results is by running this query:

SQL> set linesize 2000

SQL> column sql_redo format a200

SQL> Set trimspool on

SQL> SELECT username, sql_redo, sql_undo FROM v$logmnr_contents ORDER BY timestamp;
See the next section on search strategies for ideas on improving your search.
Cleaning Up
Stopping LogMiner frees up system resources by closing down LogMiner. Connect as SYS:

SQL> EXECUTE dbms_logmnr.end_logmnr;
Search Strategies
Remember that this is the most basic of information on the use of LogMiner. With supplemental logging turned on, the LogMiner View in the GUI, the use of this utility has become much friendlier. However, with a minimum of commands, you can reach into the REDO logs and “magically” bring transactions back from the dead. Here are some ideas to make that easier:
Prep work can narrow your search
If you have an idea of when a change occurred, query the log history view to narrow the search for the correct REDO log.
select * from v$loghist;
THREAD#
SEQUENCE#
FIRST_CHANGE#
FIRST_TIME
SWITCH_CHANGE#

1
50865
5435667712681
2/25/2008 10:18:10.000 PM
5435667746882

1
50866
5435667746882
2/25/2008 10:21:00.000 PM
5435667783764

1
50867
5435667783764
2/25/2008 10:23:52.000 PM
5435667831236

1
50868
5435667831236
2/25/2008 10:26:47.000 PM
5435667864105

1
50869
5435667864105
2/25/2008 10:27:45.000 PM
5435668524927

1
50870
5435668524927
2/25/2008 11:03:58.000 PM
5435668818385

1
50871
5435668818385
2/25/2008 11:23:17.000 PM
5435669324582
How to more successfully search
You can quickly narrow your searches with knowledge of what you are looking for. If you have the username, know the date/time range the transaction fell in, know the table that was involved, your query can be constructed to get right at it:
In this example we have all 3 elements – username, timestamp range and we are looking for the table name in the REDO:
SELECT to_char(scn,'9999999999999'),to_char(timestamp,'DD-MON-YYYY HH24:MI'), sql_redo

FROM v$logmnr_contents

WHERE username='ELABORPROD'

 and timestamp > to_date('05/03/2007 10:20','MM/DD/YYYY HH:MI')

and timestamp < to_date('05/03/2007 10:30','MM/DD/YYYY HH:MI')

and sql_redo LIKE '%PAYCODEDEF_TAB%'

ORDER BY timestamp
The trick is to use small timeslices if you have an approximate time of the incident. Once you locate some of the SQL, use the SCN to get all of the SQL in the transaction. Reading the REDO log takes time, have patience. Verify your results with the users if applicable.

Hints for a Clean Spool File

Set your SQL-Plus parameters to:

Set linesize 2000
Give it space

Set heading off
Not needed in output

Set pagesize 0
Not needed

Set trimspool on
Get rid of whitespace
A Long Example (using supplemental logging, and online dictionary)

Created a test table by copying the PS_VENDOR_LOC table to TIM2.PS_VENDOR_LOC.

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX) COLUMNS;

Database altered.

SQL> select count(*) from tim2.ps_vendor_loc;

 COUNT(*)

 315988

SQL> DELETE FROM tim2.ps_vendor_loc where vndr_loc LIKE '%0146' ;

14 rows deleted.
SQL> commit;

Commit complete.

SQL> select count(*) from tim2.ps_vendor_loc;

 COUNT(*)

 315974

Did a log switch. (Necessary because we have no archive logs.)

Add a new file, or a new set of files for analysis:

SQL> EXECUTE dbms_logmnr.add_logfile ('/db/FTST/log05a.dbf' , dbms_logmnr.NEW);

PL/SQL procedure successfully completed.

To review the log files to be analyzed run this query:

SQL> SELECT db_name, thread_sqn, filename FROM v$logmnr_logs;

DB_NAME
THREAD_SQN
FILENAME

FTST 286

/db/FTST/log05a.dbf

Started the analysis - this loads the contents view (Using the 9i version - online catalog).

SQL> EXECUTE dbms_logmnr.start_logmnr (options=>dbms_logmnr.dict_from_online_catalog);

PL/SQL procedure successfully completed.

Confirmed I set up LogMiner correctly by running this query:

SQL> SELECT seg_name, operation FROM v$logmnr_contents WHERE rownum <= 10;

Analysis:

Since I knew the the owner I searched the contents with a where clause.

SQL> set linesize 2000

SQL> set heading off

SQL> set pagesize 1000

SQL> SELECT sql_undo FROM v$logmnr_contents where sql_redo LIKE '%TIM2%' ORDER BY timestamp;

This returned 14 rows. Bingo! Correct number of rows found.
Stop LogMiner and frees up system resources.
SQL> EXECUTE dbms_logmnr.end_logmnr;

Appropriate Use
LogMiner is useful for identifying and undoing logical corruption. It enables you to determine when a logical corruption began, so you can perform granular logical recovery, undoing specific transactions.
Transactions that can be “undone”. Be aware of the risk that changes subsequent to the transaction may have occurred. If your database enforces referential integrity within the database (why wouldn’t it?), the risk is mitigated. Especially in the newer releases of Oracle and LogMiner. If your database enforces integrity in the application, knowledge of the application and the relationships the transaction may have with other tables is vital.

If the corruption occurred after the world has moved on, LogMiner may give you the option of not needing to roll the database back to a point in time. Use LogMiner to identify all pieces of the corrupting transaction(s) and “undo” them.
Use LogMiner to sleuth. So many of the applications companies use today are not grown in house. We may think we know what is going on, but with LogMiner we can dig into the details to understand what is really happening. This can reveal tuning opportunities, and shed light on possible process improvement.
In the case of a “disaster”, when others are “sure” of what was involved; LogMiner can show you what did happen.

Recovery of a database that requires rolling back to a point in time, can now be rolled forward with recovered good transactions.

Using LogMiner as an audit tool. Digging into the redo, allows the DBAs and auditors a window into database activity. The Who, What, When of a transaction can be identified and documented.

To undo a transaction, why not use Flashback Query? You may not have the value in the undo, if the undo_retention parameter is set for too short a period.

The possibilities are only limited by your dexterity and imagination in the use of LogMiner.
When LogMiner Saved the Day
Several times in the past 8 years, LogMiner has saved the day, here are a couple of examples:
Loss of an Application Module – Oops We Hit Delete
On Monday afternoon, February 21, 2005, one of our mills accidentally deleted the entire purchasing module of the Maximo application. The developers and analysts were absolutely certain only 6 tables were involved. On Tuesday the 22nd the DBAs were asked to bring these tables back from an export taken early on Sunday the 20th. Two days had passed since this export had been taken. The application and database were not shutdown or users shut out. After mining the logs for the redo information, the DBAs identified that 7 tables were involved, 7,896 rows had been deleted. LogMiner was used to construct the undo transactions, and the data was reapplied to the application. Since the module was out of commission, no data needed to be synchronized and transactions that had been logged in other portions of the application were not lost with a database recovery to an earlier point in time. The integrity of the application was maintained, by not using the export files, which would have lost Sunday and Monday’s purchasing transactions.
I Can’t Believe We Updated That Many Rows?!

In August of 2007, some SQL was run to change two banking account codes in our finance database. This was run in test, and verified. Unfortunately, only expected results were verified. The code was run in production on a Tuesday at noon. Wednesday afternoon the accountant and developer were scrambling to understand what was wrong in the banking module. Our undo retention is set for four hours. Too much time had passed to flashback the transaction. No logs were kept, or counts retained. We did have the exact statement that was run. Using LogMiner, it was discovered that 19,000 rows had been updated. A flaw was discovered in the SQL, and upon further review, it was clear they had intended to only update about 6,000 rows. LogMiner was used to undo the transaction, and the correct SQL was applied. A good deal of time was spent verifying that the columns updated had not changed in the 28 hours since the bad transaction was run. It was very fortunate that the accountant was very familiar with the data.
LogMiner Feature Improvements

Your best source of information on LogMiner, is Oracle’s Database Utilities documentation. Here is a brief listing of features added to LogMiner in the releases of Oracle subsequent to Oracle 8i:
Oracle 9i LogMiner New Features
A LogMiner Viewer GUI in addition to the command line interface.
The ability to translate DML statements associated with clusters
Support for DDL statements

Extracting the dictionary to the redo logs or an online dictionary
The ability to detect a stale dictionary

The ability to skip redo log corruption

The ability to display only committed transactions
Oracle 10g LogMiner New Features
New procedure - DBMS_LOGMNR.REMOVE_LOGFILE(), replaces the REMOVEFILE option.
NO_ROWID_IN_STMT option for START_LOGMNR, filters out ROWID from undo and redo statements.

Supplemental logging is enhanced with options to log – FOREIGN KEY and ALL.

At the table level, identification of key logging is supported.

Oracle 11g LogMiner New Features
LogMiner now supports XML data types.

LogMiner Viewer GUI has been enhanced.
Conclusion

In my use of LogMiner, I have barely scratched the surface of its capabilities. I have successfully recovered several of our sites using the 8i features of LogMiner. It truly can, “pull your bacon out of the fire” when it seems like you won’t be able to bring the data back. Not only a useful recovery tool, it can prove what tables are at play in a “lost” transaction or being used by an application. . The beauty of this utility is, even in its most basic form, it delivers.
Reference

Oracle 8i “Enterprise DBA Part 1B: Backup and Recovery Workshop”

Oracle® Database Utilities 10g Release 2 (10.2) Part Number B14215-0, Chapter 17

Oracle® Database Utilities 11g Release 1 (11.1) Part Number B28319-02, Chapter 18

Oracle Technology Network, Oracle Magazine; Arup Nanda, “Mining for Clues”

Oracle 9i New Features; Robert G. Freeman, Oracle Press: ISBN0-07-222385-5

White Paper: LogMiner Utility Release 8.1.x - 10g, Metalink Note: 291686.1
Exploring Oracle vol 7 Num 10 October 2002 pages 6 - 9

Exploring Oracle vol 7 Num 11 November 2002

About the Author

Tim Herring is a lead DBA with Boise Inc. He graduated in 1991 from California State University Chico with a Bachelor of Science in Business, concentration in MIS / Databases. He spent seven years as an application developer using PowerBuilder in an Oracle environment. For two years he acted as a DBA / developer responsible for VB development on SYBASE, SQL Server 6 and Oracle 7. For the past nine years he has been working as an Oracle DBA on Oracle 7.33, 8i, 9i, and 10g. He has been a member of IOUG for the past six years. He presented a 30 minute “Quick Tip” at Collaborate07 on Cleaning Up Replication in a Cloned Database.
Special Thanks

I wish to thank Craig Shallahamer, Gaja Krishna Vaidyanatha, Rich Niemiec, and Kirti Deshpande; the real Oracle gurus, who continue to provide inspiration, knowledge, guidance and wit to the Oracle DBA community.

7

Paper #369

_1265457785.vsd

