Database - Performance Tuning

SQL Tuning with 10046 Trace data and dbms_xplan

Mahesh Vallampati, Hotsos

Abstract

The 10046 trace data from the Oracle Database at level 12 contains valuable information about the execution of the SQL statement in the form of stat lines. These stat lines contain information about the row source execution statistics of the SQL statement. This information, in conjunction with DBMS_XPLAN and the application of Method R, can be used to quickly identify where in the SQL statement most of the time is being spent, allowing the DBA or the developer to focus on that part of the SQL statement and study it in detail. This method works no matter how complex the SQL statement is. In this presentation, we will review the stat lines, how they can be formatted so they can be studied effectively, and how this can be used in conjunction with DBMS_XPLAN to quickly get to the part of the SQL statement that is consuming most of the time in the execution of that SQL statement.

Goals of SQL Tuning or Optimization

Before we get into SQL Tuning or Optimization, it is useful to review the objectives for this task.

At a fundamental level, SQL Optimization focuses on achieving these goals.

1. Improve or Sustain the response time for a SQL statement.

2. Consume the least amount of system and database resources, usually measured in Logical I/O’s (LIO’s) for that SQL statement .

3. Meet or exceed the response time expectation of the user using the SQL statement.

4. Know where most of the time was spent in the processing of the SQL statement.

5. Evaluate alternate options to reduce the time.

Historical Approaches to SQL Optimization

SQL Tuning or optimization usually has involved the following steps

1. Trial and Error

Make changes until you hit upon the solution; usually indexes or statistics.

2. Guessing

Guess which part of the SQL statement is slow.

3. “Look at the Data Model”

Study the data model.

4. Use Materialized Views or Temporary Tables or Rebuild Tables and Indexes

Pre-build or Rebuild the tables or views and query against them.

5. Try to rewrite the SQL

Make efforts to re-write the SQL.

(1) and (2) are inefficient to begin with although it is a very popular approach. (3) purports to be more sophisticated than (1) or (2) but has not been helpful, at least for this author. (4) is another approach which could work as long as the cost of keeping the materialized views current does not exceed the cost of multiple executions of the query itself prior to using materialized views. (5) can be done too but is difficult to do if the SQL statement is functionally correct.

An Alternative Approach or an Actual Method to SQL Optimization

In this paper, we will present an actual method or a repeatable process for SQL Optimization.

We begin by asking the question, "What happens when Oracle executes a SQL statement after it has been parsed?"

The answer to that is that Oracle transforms the SQL Statement execution into a set of row source operations.

We propose a method which asks the following questions.

If a SQL statement execution consists of a set of row source operations, we can then ask the following questions.

· Which row source operations of the SQL Statement are taking too long?

· What part of the SQL Statement is driving it?

· Why is it taking a long time?

· What needs to be done to address it?

It should be noted that this takes the time perspective into consideration, but not other considerations like Logical I/O’s or rows returned for each row source operations. We have encountered examples where taking the approach of Logical I/O’s and rows returned has not been reliable and the expected payoff was not evident after we addressed the actions coming out of the approach.

This paper focuses on the first two steps. The third and fourth steps are usually easy to figure out once the first two are known.

Benefits of this Method

The benefit of this method is that it is repeatable and learnable. This approach is derived from Method R (proposed by Cary Millsap in “Optimizing Oracle Performance”) which is known in the industry for its repeatability, reliability and predictability.

Concepts

Before we use this method, we need to become familiar with a few concepts. They are:

· 10046 Trace Data

· STAT lines in 10046 Trace Data

· STATISTICS_LEVEL and its impact on the quality of STAT lines in trace data

· A script to gather 10046 Trace Data for a SQL statement with STAT lines

· Structure of STAT Lines

· 11g Enhancements to STAT lines

· Hotsos View of STAT lines

· DBMS_XPLAN

· Method R

10046 Trace Data

The Oracle Database Event 10046 instructs the kernel to enable SQL Statement timing. More accurately it enables database and system call timing.

The 10046 event does the following to a trace file in a time-sequential fashion:

· Database calls

· Oracle “timed events,” if you ask for them (waits => true)

· Placeholder-value bindings, if you ask for them (binds => true)

· Execution plans for SQL statements (called STAT lines)

STAT Lines in 10046 Trace Data

STAT lines in the 10046 trace file reveal the execution plan that was chosen by the Oracle query optimizer for the SQL statement. STAT lines are individual row source operations that make up the execution plan along with execution statistics for the individual row source operations. This information is very useful for finding the inefficient row source operations in an efficient manner and is the basis of this approach. For the statistics in STAT lines to be reliable, we have to enable STATISTICS_LEVEL=all at the session level.

STATISTICS_LEVEL and its Impact on the Quality of STAT Lines in Trace Data

STATISTICS_LEVEL was introduced in 9iR2. It is an initialization parameter. It controls all major statistics collections and advisories in the database. STATISTICS_LEVEL can be enabled at the database level and/or at the session level. The V$STATISTICS_LEVEL view can be queried to know the settings for the database.

STATISTICS_LEVEL can take one of three values.

· BASIC

· No advisories or statistics are collected.

· TYPICAL

· Buffer cache advisory

· MTTR advisory

· Shared pool sizing advisory

· Segment level statistics

· PGA target advisory

· Timed statistics and more in 10g

· ALL

· All of TYPICAL, plus the following:

· Timed operating system statistics

· Row source execution statistics
When STATISTICS_LEVEL is set to ALL, it gathers row source execution statistics accurately that is very useful for SQL tuning.

It should be noted that STATISTICS_LEVEL should NOT be set to ALL at the instance level, as this will cause some stability issues due to the heavy overhead associated with collection of timed operating system statistics and row source execution statistics.

It can, however, be set to ALL at a session level before tracing is enabled. This will enable the database to publish accurate row source execution statistics in the STAT lines.

A Script to Gather 10046 Trace Data for an SQL Statement with STAT Lines

Gathering of a properly scoped 10046 Trace Data is crucial for proper diagnosis of Oracle Performance Issues. The script below will accomplish that. To gather a properly scoped trace file optimizing a SQL statement, the following need to be set:

· Timed Statistics should be set to true

· The trace file size should be set to unlimited so it does not get truncated.

· A trace file identifier should be set so it can be easily identified by the DBA

· Statistics Level should be set to ALL so we can obtain row source execution statistics.

· Tracing should be enabled.

· The SQL statement should be run.

· Then, instead of disabling trace or exiting from the database, we recommend that you disconnect. The reason for this is that when you disable trace or exit from the database, the database kernel could suppress the publishing of the STAT lines.

The script below should accomplish all of the requirements above.

alter session set timed_statistics = true;

--/* This sets timed statistics so timing information is captured */

alter session set max_dump_file_size = unlimited;

--/* This prevents the trace file from being truncated */

alter session set tracefile_identifier = 'widget_test';

--/* This makes it easy for the DBA to find the file in the udump directory */

alter session set statistics_level=all;

--/* this provides detailed information about SQL execution */

alter session set events '10046 trace name context forever, level 12';

--/* This sets 10046 tracing at Level 12*. You could use other techniques described in the white paper */

<SQL Statement> or <PL/SQL Program> or <any Oracle Code>

disconnect; /* Instead of disabling trace disconnect as disabling trace suppresses the STAT lines that contain valuable information about SQL execution */

exit;

Structure of STAT Lines

A STAT line looks like this in the trace file:

STAT #6 id=9 cnt=159 pid=4 pos=2 obj=19 op='TABLE ACCESS BY INDEX ROWID IND$ (cr=332 pr=1 pw=0 time=33601 us)'

The STAT line indicates that it is a STAT line which is a row source operation for a SQL statement which has been parsed into an Oracle cursor for execution.

#No.
(
The cursor number within the context of that trace file where the SQL Statement was parsed.

id
(
The unique id of the row source operation within the STAT line set

cnt
(
The number of rows returned for this row source operation

pid
(
The parent “id” for this row source operation

pos
(
The position of child within parent

obj
(
The object_id of the row source operation (object_id from dba_objects). Set to 0 for non-object row source operations like nested loops etc.
op
(
The name of the row source operation

cr
(
The number of consistent Reads

pr
(
The number of physical Reads

pw
(
The number of physical writes (e.g. Sorting Operations that write to temporary segments)

time
(
The elapsed duration in microseconds including descendants
The time is important as we will use it as our basis for SQL tuning optimization. It should be noted that the duration of a row source operation will include its descendants. This means that we have to calculate the duration of the individual row source operation carefully using correct arithmetic.
11g Enhancements to STAT Lines

Oracle has continuously enhanced the capability of STAT lines and other diagnostic capabilities. In 11g, the following were added to the STAT lines.

cost
(
Cost Column in V$SQL_PLAN

card
(
Cardinality Column in V$SQL_PLAN

size
(
 Bytes column in V$SQL_PLAN

This is useful information as we can then compare the cost of a row source operation to its elapsed time and also compare the cardinality to the number of rows in the row source operation. This can be useful to determine the effectiveness of the statistics gathering strategy that is in place and evaluate options to enhance the quality of the collection.

Hotsos View of STAT Lines

As can be seen from above, the STAT lines are not easily readable. Also, it can be seen that the time that is captured by the database for each row source operation includes itself and its descendants. That is not helpful because we would not know which row source operations are taking the most time. We could however do the arithmetic to get the duration of the individual row source operations but these have to be done very carefully. The Hotsos Profiler does that automatically and a section of the Hotsos Profiler Report that shows the STAT lines is documented below.

[image: image8.png]
The Duration of self column is calculated by the Hotsos Profiler software. A configurable relevance filter kicks in and highlights the row source operations that took more than 20% by default. The Profiler report clearly indicates what row source operations are expensive from a time perspective and also builds an indented execution plan based on the values of the id, parent id, and the position column.

DBMS_XPLAN

DBMS_XPLAN is a standard package that was introduced in 9iR2 and is a supported way of viewing the output of the Explain Plan commands in several pre-defined formats. 10g and 11g have made significant enhancements to the DBMS_XPLAN.

Before starting to use DBMS_XPLAN, do ensure that you are using the correct version of the PLAN Table and DBMS_XPLAN.

· Plan Table - $ORACLE_HOME/rdbms/admin/utlxplan.sql

· DBMS_XPLAN - $ORACLE_HOME/rdbms/admin/dbmsxpln.sql

The DISPLAY function of DBMS_XPLAN is what we will be using to look at the explain plan.

The DISPLAY Function takes in three arguments:

· The name of the table holding the PLAN (PLAN_TABLE or a copy of it).

· The STATEMENT_ID of the SQL Statement being explained.

· The DISPLAY format.

· BASIC – Just displays the minimum information in the plan

· TYPICAL – Displays the relevant information in the plan and predicate information (PX information if applicable)

· SERIAL – Like typical, but no parallel execution information even if applicable

· ALL – All of typical including projections, alias, etc.

The steps to get an output of a Plan are as follows.

1. Explain the SQL Statement into a plan Table as follows.

EXPLAIN PLAN

SET STATEMENT_ID = 'abc'

FOR

select object_type, count(1)

from dba_objects

where owner= 'SCOTT'

group by object_type;

2. Run the following command to get the output of the Explain plan.

SELECT * FROM TABLE(dbms_xplan.display('PLAN_TABLE','abc','TYPICAL'));

As can be seen above, the PLAN_TABLE is our plan table into which the plan was generated. abc is the statement id with which we label the SQL Statement.

The output is shown below.

[image: image2.png]
The plan above shows the row source operations that would potentially be executed by the Cost Based Optimizer. One of the interesting features of this view of the plan is that the optimizer explains some of the row source operations in terms of access and filter predicates. This is valuable information which can be used to get to the sections of the SQL statement that are slow based on the execution plan as display the STAT lines in the Hotsos Profiler.

For example, lines 4, 7, 8, 9, 10, 13, 14 in the plan map point to the access and the filter predicates as shown above.

Method R

Method R (Response Time) was pioneered by Cary Millsap in the book “Optimizing Oracle Performance”.

1. Identify the important task.

2. Measure its response time (R) in detail.

3. Optimize R in the most economically efficient way.

4. Repeat until system is economically optimal.

An expanded version of this is described below.

1. Select the user actions for which the business needs improved performance.

2. Collect properly scoped diagnostic data that will allow you to identify the causes of response time consumption for each selected user action while it is performing sub-optimally.

3. Execute the candidate optimization activity that will have the greatest net payoff to the business. If even the best net-payoff activity produces insufficient net payoff, then suspend your performance improvement activities until something changes.

4. Go to step 1.

Method R tells you where to start. It tells you when to stop. So you can avoid “Compulsive Tuning Disorder”.

Method R Applied to STAT Lines and EXPLAIN PLAN

With all these tools (STAT Lines, Method R and DBMS_XPLAN), we can then perform the following steps.

 SHAPE * MERGEFORMAT

In the step above, we have merged the explain plan and the execution plan side by side.

With this perspective, we can proceed with the Method based approach to SQL Optimization.

Before we start the Method Based Approach, we need to ask first a fundamental question: Do the Execution Plan and the Explain Plan Match?

This needs to be resolved before proceeding further.

Matching on Row Source Operation Steps

· Do the execution plan row source operation steps in the STAT lines match the EXPLAIN PLAN row source operation steps?

· If not, what could be the reason? The following is a subset of a mutually exclusive and collectively exhaustive list.

· Statistics issue?

· Skewed data?

· Session optimizer settings?

· Bind variable type mismatch?

· Schema change?

· Optimizer bug?

Matching on Rows

· Does the execution plan row count for each row source operation in the STAT lines match the EXPLAIN PLAN row source operation steps even if the row source operations match?

· This is a fundamental optimization tactic that can be used to investigate the changes in the plan.

Once the execution plan and the explain plan match, we can then apply Method R to this view of STAT lines and Explain Plan.

· Which row source operations are consuming most of the response time?

· What access predicates are driving it?

· Why? Is there a better way of rewriting the SQL statement to achieve the predicate?

· Is this row source operation the most efficient way to do the job (e.g., NESTED LOOP versus HASH JOIN or vice versa)?

· Why are so many blocks being scanned to get a small subset of rows?

· If the index is being used and if it is doing a range scan over a large set of blocks, is that the right index to be used?

· Can an alternate index help or are we better off doing a full table scan?

· Is there a big difference in the actual rows in the execution plan versus the expected rows from the explain plan?

· Can we gather better statistics to help the optimizer make better estimates of cardinality and selectivity?

Tying back STAT lines in trace files (actual execution plan) to the EXPLAIN PLAN output (predicted execution plan) using DBMS_XPLAN should be the first step in SQL optimization. Applying Method R to this view helps us find out which row source operations are driving most of the response time and the corresponding predicates driving the response time can be obtained from DBMS_XPLAN. Large discrepancies in the actual rows returned in the execution plan and the estimated rows in the execution plan will also point to the problem.

Some performance experts have used LIO’s in the STAT lines as an alternative framework. Although this is a viable strategy, we have seen examples where STAT lines with high LIO counts have not contributed significantly to the response time.

A Note of Caution (LIO versus PIO’s)

Cary Millsap’s paper, “Why should you focus on LIO’s and not on PIO’s?” put an end to the 90’s practice of focusing on elimination of PIO’s as a primary performance activity.

In the Profile of the execution plan shown below, the line “Index Unique Scan I_IND1(39) “ does only 5 LIO’s but consumes 34.4% of the execution time of the SQL Statement. The question is whether the time is expensive because of these 5 LIO’s or the PIO for that row source operation.

[image: image4.png]
Cary’s white paper (http://www.hotsos.com/e-library/abstract.php?id=7)clearly documents why you should:

· Focus on response time keeping logical I/Os in mind.

· Even after eliminating physical I/Os there is still an opportunity to make the SQL statement run faster.

· A focus on LIO reduction automatically drives PIO reduction.

SQL statements consume LIO’s which drives PIO consumption. PIO is a secondary, derived effect. When the query is run the first time, depending on the data cached in the database, the PIO may dominate the components of the response time. When you run the query the second time, the data should be cached and you will see a better picture of the inefficient row source operations triggered by LIO’s.

To get the right profile of the execution plan from a LIO perspective, we need to do the following.

1. Execute the query once. This will parse the query.

2. The buffer pool will cache the data

3. Execute the query again and do a level 12 Trace with STATISTICS_LEVEL enabled. This time the STAT lines show the effect of LIO on the SQL execution response time

A real world example

We demonstrate an example from a case study from one of our customers. This customer was running a SQL Statement that ran every minute and was taking 13 seconds to run. It was the single largest expensive SQL Statement in the database.

The SQL Statement is shown below.

SELECT fds.short_text

FROM wsh_delivery_assignments wda, wsh_delivery_details wsh,

fnd_attached_docs_form_vl fad, fnd_documents_short_text fds

WHERE wsh.released_status = 'Y'

AND wsh.delivery_detail_id = wda.delivery_detail_id

AND wda.delivery_id = 124901 AND wsh.source_code = 'OE'

AND fad.datatype_name = 'Short Text' AND fad.usage_type = 'O'

AND fad.function_name = 'OEXOEORD' AND fad.entity_name = 'OE_ORDER_HEADERS' AND fds.media_id = fad.media_id

AND fad.pk1_value = wsh.source_header_id

AND ROWNUM = 1

The execution plan from the STAT lines is show below.

[image: image5.png]
As can be seen above, lines 18, 19, 26 and 28 are the most expensive row source operation from a timing perspective.

The DBMS_XPLAN for the SQL Statement is shown below.

[image: image6.png]
An examination of the corresponding predicates for 18, 19, 26 and 28 indicate that line 28 has an implicit to_number conversion that is happening. The SQL statement does not have any explicit to_number conversion being specified. That is where we start. So we re-write the SQL statement specifying the correct type.

Further examination revealed that source_header_id was a number column and pk1_value was a varchar2 column. To resolve this, the SQL Statement was written as follows.

SELECT fds.short_text

FROM wsh_delivery_assignments wda, wsh_delivery_details wsh,

fnd_attached_docs_form_vl fad, fnd_documents_short_text fds

WHERE wsh.released_status = 'Y'

AND wsh.delivery_detail_id = wda.delivery_detail_id

AND wda.delivery_id = 124901 AND wsh.source_code = 'OE'

AND fad.datatype_name = 'Short Text' AND fad.usage_type = 'O'

AND fad.function_name = 'OEXOEORD' AND fad.entity_name = 'OE_ORDER_HEADERS' AND fds.media_id = fad.media_id

AND fad.pk1_value = to_char(wsh.source_header_id)

AND ROWNUM = 1

The execution plan and the results are show below.

Results

	
	Response Time
	LIO Count

	Before
	13.8
	642,065

	After
	.03
	697

Execution Plan

[image: image7.png]
As can be seen above, focusing on the elapsed duration of the individual row source operation and identifying the predicates that are attributes can be used to optimize the SQL Statement effectively.

Recap

· Run the query once to parse the query and warm up the buffer pool with the data blocks.

· Trace it the second time with STATISTICS_LEVEL=ALL.

· STAT lines in trace files contain timing information of row source operations. These timings includes descendants of the row source operations.

· Calculate the individual row source operations timings using the Profiler software.

· Obtain the EXPLAIN PLAN for the SQL statement using DBMS_XPLAN.

· Put them side-by-side and see which access predicates are driving the row source operations that are taking the most time.

· Start at the deepest level row source operation and from the bottom first.

· Make changes necessary to make the SQL Statement run faster.

· Test and see if it improves or evaluate alternative options.

Conclusion:

This paper describes a repeatable and practical approach to SQL optimization. When faced with a SQL optimization challenge, performing the steps described above will lead to quick results and reduced response time leading to better applications.

15

 Paper 313

[image: image1.png]