Database – Performance Tuning

Why I Use Oracle’s OS Watcher

Walt Silva, United Technologies

Introduction

Oracle's OS Watcher (OSW) is a collection of scripts whose purpose is to gather various system and network performance metrics. This paper introduces OSW, it’s installation and operation, why the author uses OSW, and how OSW metrics can be used for tactical performance monitoring and strategic performance analysis.

Why OSW?

· Provides valuable system level performance metrics for troubleshooting.

· Oracle Support often asks for this data for diagnostic purposes during service request engagements.

· Provides supporting data for performance monitoring, alerting, capacity planning/forecasting.

· UNIX scripts are non-intrusive and are implemented as clear shell scripts.

How OSW Data Can Be Used

· Direct inspection of raw metrics using everyday unix commands for troubleshooting performance problems.

· Shell scripts to inspect or aggregate data for troubleshooting performance problems, real-time monitoring, and/or alerting of performance anomalies.

· Input to graphical performance monitoring components.

· Load of raw metrics into Oracle database for further analytical capability and to correlate OS metrics to Oracle metrics.

OSW Overview

OSW (UNIX)

 “OS Watcher (OSW) is a collection of UNIX shell scripts intended to collect and archive operating system and network metrics to aid support in diagnosing performance issues. OSW operates as a set of background processes on the server and gathers OS data on a regular basis, invoking such Unix utilities as vmstat, netstat and iostat”
.

Statistics Collected By OSW (UNIX)

· ps - process status

· top – process list/system statistics

· mpstat – processor statistics

· iostat – I/O stastisics

· netstat – network status

· traceroute – network packet statistics

· vmstat – virtual memory statistics

“OSW invokes these distinct operating system utilities, each as a distinct background process, as data collectors. These utilities will be supported, or their equivalents, as available for each supported target platform.”
.

OSW (UNIX) is available for Linux, Solaris, AIX, Tru64, and HP-UX platforms.

OSW (Windows/VMS)

A version of OSW is available for WinXP, Win2003 (Metalink 433472.1), and OpenVMS (Metalink 418163.1).

Note: The discussions and examples in this whitepaper focus on use of OSW on UNIX platforms only.

OSW Charting Component

“OS Watcher Graph (OSWg) is a data parsing and graphing utility which comes bundled with OSW v2.0.0 and higher. OSWg parses vmstat files for all supported Unix platforms and iostat files for Solaris, AIX and Linux platforms only. The ability to display this information graphically relieves the user of manually inspecting each file.”

OSW Installation/Operation

OSW Download and Install

OSW can be downloaded from a link within Oracle Metalink Article 301137.1 (OSW’s User Guide). The downloadable package is in tar format. The package untars into a new osw folder. The contents are shown below, with each item’s function described.

$ ls -la

total 2104

drwxr-x--- 2 oracle dba 256 Feb 12 10:42 .

drwxr-xr-x 10 oracle dba 4096 Jan 08 15:34 ..

-rw-r----- 1 oracle dba 1055232 Feb 07 16:30 osw.tar

$ tar xfv osw.tar

x osw

x osw/Exampleprivate.net, 1731 bytes, 4 media blocks.

…

…

…

x osw/OSWatcher.sh, 16214 bytes, 32 media blocks.

x osw/oswg.jar, 756013 bytes, 1477 media blocks.

x osw/tmp

$ cd osw

$ ls -1

Exampleprivate.net # template for configuring targets to traceroute

OSWatcher.sh # Main OSW Script, calls other scripts below

OSWatcherFM.sh # File management script controlling data retention functions

OSWgREADME # README for OSW Graphing Component

README # README for OSW

gif # Folder to hold OSWg graph output

oswg.jar # Java module for the charting features of OSWg component

oswlnxio.sh # iostat collector for Linux

oswlnxtop.sh # top collector for Linux

oswnet.sh # netstat collector

oswsub.sh # header “stamper” and data collector shell

profile # Folder used by OSWg component

src # Supporting html/gifs for OSWg component

startOSW.sh # Startup script for OSW

stopOSW.sh # Shutdown script for OSW

tarupfiles.sh # Courtesy script to tar up OSW data for upload to Oracle Support

tmp # Scratchpad location for internal OSW operation

topaix.sh # topas collector for AIX

The author highly recommends inspection of these scripts carefully before executing. The reason for inspection is generally good practice before executing any new installed module (to ascertain any security or operational issues), but also to familiarize the user with the internals of it’s operation before actual execution.

OSW Operation

To start OSW, execute ./startOSW.sh from the /osw folder. This script accepts 3 arguments: 1) Snapshot interval ($interval) in seconds (default 30), 2) Data retention ($rolltime) period in hours (default 48), and 3) The compression module ($compress) used to compress OSW metric files for archival (optional).

The startOSW.sh script executes OSWatcher.sh and OSWatcherFM.sh in the background. If it does not exist, an /archive folder is created. Every $interval seconds OSWatcher.sh calls child scripts to collect system metrics, and writes the data to subfolders below /osw/archive (described in detail in “A Look Inside” section below). At the top of each hour, OSWatcherFM.sh wakes up to remove any files older than $rolltime hours.

The author recommends the retention period be set so it is aligned to Oracle’s Automatic Workload Repository (AWR) and PERFSTAT retention configuration so a complete “picture” of performance data is available. The author runs startOSW.sh at his shop to snapshot every 60 seconds and retains 720 hours of archived data uncompressed (30 days).

The amount of data generated by OSW will vary greatly from user to user. If space is at a premium, it is suggested to run first with the default retention period of 48 hours to establish a baseline, and to make any further data retention estimations from that baseline. Also, since the data is outputted to a separate /archive subfolder, it is possible to create this subfolder as a symbolic link to a folder addressed to a separate volume if need be. The author sets up his /archive subfolder as a symbolic link similarly.

To stop OSW, execute ./stopOSW.sh. This script simply kills processes with “OSWatch” in the ps command line text.

Scheduling OSW Execution

Since starting OSW is through a simple command line interface, it can be easily scheduled through init or cron. Further, the startOSW.sh script is coded so that it checks if OSW is already running (and exits if so), which effectively allows the ability to schedule startOSW.sh to execute frequently. The author schedules his startOSW.sh via cron to execute every 15 minutes.

Since execution errors may be outputted from startOSW.sh, it is recommended that startOSW.sh be executed so stdout and stderr is redirected to a file. The author wraps startOSW.sh through a separate, homegrown script.

$ more oswatcher.sh

#!/bin/ksh

. $HOME/.profile

export logfile=`basename $0`.log

rm $logfile >/dev/null 2>&1

echo `date` >> $logfile

cd /osw

./startOSW.sh 60 720 >> $logfile 2>> $logfile

exit

$ more oswatcher.sh.log

Thu Feb 7 17:00:00 EST 2008

An OSWatcher process has been detected.

Please stop it before starting a new OSWatcher process.

Preparing OSW Data For Upload To Metalink

The OSW installation provides a script (/osw/tarupfiles.sh) to tar and compress /archive contents. If the /archive folder has been symbolically linked (see “OSW Operation” above), it will be necessary to add the “h” option to the tar line in this script. The resulting file is named with convention osw_archive_{mmddyyhh24mi}.tar.Z

A Look Inside The Metrics Collected

As aforementioned, OSW will collect metrics at the snapshot frequency configured when OSW was started (see “OSW Operation” above), and output the raw data in subfolders under /osw/archive, categorized by the type of metric collected. As shown below, the naming convention of these folders is osw{metric type}.

$ cd osw/archive

$ ls -1

oswiostat

oswmpstat

oswnetstat

oswprvtnet

oswps

oswtop

oswvmstat

Every hour at the top of the hour, OSW will write data into a new file and purge files older than the retention period configured when OSW was started (see “OSW Operation” above). Optionally, files that have rolled past the current hour will be compressed using the compression program configured when OSW. As shown below, the naming convention for the files containing the raw metrics is {hostname}_{metric type}_mm.dd.yy.hh24.dat.

$ cd oswvmstat

$ ls -1rt | head -1

myserver.com_vmstat_01.08.08.1600.dat

As OSW writes a snapshot, a header record is written denoting a new snapshot. The first field in this record is “zzz ***” followed by the output of UNIX `date`. Depending on the OS platform and version of OSW, a file header record may precede the snapshot header record identifying platform and OSW version.

$ more myserver.com_vmstat_01.08.08.1600.dat

AIX OSW v2.0.2

zzz ***Tue Jan 8 16:00:26 EST 2008

System configuration: lcpu=16 mem=13312MB

kthr memory page faults cpu

----- ----------- ------------------------ ------------ -----------

 r b avm fre re pi po fr sr cy in sy cs us sy id wa

 1 0 2060775 1508158 0 0 0 0 0 0 557 192471 5867 5 10 84 0

 0 0 2060770 1508157 0 0 0 0 0 0 459 180990 4758 3 9 87 0

 1 0 2060463 1508458 0 0 0 0 0 0 427 110772 6682 6 7 87 0

$ cd ../oswps

$ more myserver.com_ps_01.08.08.1200.dat

AIX OSW v2.0.2

zzz ***Tue Jan 8 12:00:01 EST 2008

 F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME

TTY

 TIME CMD

 200003 A root 1 0 0 60 20 14001400 684 Jan

02

 - 8:41 /etc/init

 240001 A root 102586 1 0 60 20 6c41b5400 508 * Jan

02

 - 21:02 /usr/sbin/syncd 60

 240001 A root 106672 1 0 60 20 7741d9510 428 10ef170 Jan

02

 - 0:00 /usr/ccs/bin/shlap64

 240001 A root 110784 111074 0 60 20 ec23f400 428 Jan

Using OSW Data

Troubleshooting Performance Issues

The following scenario illustrates using common UNIX commands to inspect OSW data use for troubleshooting a performance issue, and further ascertaining root cause by correlating with Oracle active session history data.

Say an event occurred where system summary statistics showed available memory decreased significantly since the previous day, with the lowest point occurring around 8am of the current day. First identify any offending unix processes by looking at the “top” data collected by OSW. Since OSW rolls data into a new file every hour at the top of the hour, and it’s file naming convention includes the hour of day stamp, taking advantage of the sort option of ls is handy to identify the file to look at. As shown below, the top metrics file written between 8am-9am blatantly shows a fairly resource-intensive process. A further look into “ps” metrics offers some additional evidence with more command line detail, the start time of the process, and that it was still spinning cpu cycles up through the 8am-9am hour. Note that the command line detail confirms the process was from Oracle.

$ cd osw/archive/oswtop

$ ls -1rt | tail -12

myserver.com_top_02.07.08.0100.dat

myserver.com_top_02.07.08.0200.dat

myserver.com_top_02.07.08.0300.dat

myserver.com_top_02.07.08.0400.dat

myserver.com_top_02.07.08.0500.dat

myserver.com_top_02.07.08.0600.dat

myserver.com_top_02.07.08.0700.dat

myserver.com_top_02.07.08.0800.dat

myserver.com_top_02.07.08.0900.dat

myserver.com_top_02.07.08.1000.dat

myserver.com_top_02.07.08.1100.dat

myserver.com_top_02.07.08.1200.dat

$ more myserver.com_top_02.07.08.0800.dat

AIX OSW v2.0.2

zzzThu Feb 7 08:00:30 EST 2008

 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

 197090 - A 742:22 0 2248664 2368632 xx 81675 119968 4.5 17.0 oracleMY

 17216 - A 9363:27 0 384 384 xx 0 0 3.2 0.0 wait

 57372 - A 8958:43 0 384 384 xx 0 0 3.1 0.0 wait

 16948 - A 8981:30 0 384 384 xx 0 0 3.1 0.0 wait

 21314 - A 8102:06 0 384 384 xx 0 0 2.8 0.0 wait

$ cd ../oswps

$ grep 197090 ./myserver.com_ps_02.07.08.0800.dat

 240001 A oracle 197090 1 88 104 20 3bcefc510 2330336 14:59:32 - 742:22 oracleMYDB2 (LOCAL=NO)

 240001 A oracle 197090 1 92 106 20 3bcefc510 2330336 14:59:32 - 743:11 oracleMYDB2 (LOCAL=NO)

 240001 A oracle 197090 1 64 92 20 3bcefc510 2330336 14:59:32 - 743:59 oracleMYDB2 (LOCAL=NO)

 240001 A oracle 197090 1 85 102 20 3bcefc510 2330336 14:59:32 - 744:49 oracleMYDB2 (LOCAL=NO)

The evidence gleaned from this data can be used to query the AWR of the Oracle instance shown above in attempt to uncover more detail. In addition to the Oracle instance, the other key piece of evidence from the OSW data is that the offending process started at 2:59pm the previous day.

The purpose of the first query below is an attempt to show cpu-bound sessions since 2pm the prior day by returning any distinct session/serial # combinations (and their sql_ids) that had the most ON_CPU event “hits” in active session history over the longest period of time. One blatant session/serial # is uncovered. The second query drills down to more session/sql specifics to help further the root cause investigation.

$ sqlplus

ops$oracle@MYDB>

col sample_time for a20

col session_id for 999

col sesion_serial# for a5

col sql_id for a13

col sql_text for a30

col program for a10

col module for a15

select * from (

select

 a.session_id

 ,a.session_serial#

 ,a.sql_id

 ,count(1)

 ,to_char(max(a.sample_time)-min(a.sample_time),'hh24:mi:ss') time_hh24_mi_ss

from sys.dba_hist_active_sess_history a

where 1=1

and a.instance_number=2

and a.sample_time between trunc(sysdate-1)+(14/24) and trunc(sysdate)+(9/24)

and a.session_state = 'ON CPU'

group by

 a.session_id

 ,a.session_serial#

 ,a.sql_id

order by 4 desc

) where rownum<=10

/

SESSION_ID SESSION_SERIAL# SQL_ID COUNT(1) TIME_HH24_MI_SS

---------- --------------- ------------- ---------- ------------------------

 855 2363 41gah808juxk7 3964 +000000000 16:35:48.938

 855 2363 4yjnw60nfy4kz 91 +000000000 16:24:17.926

 855 2363 75rfw4h90unky 74 +000000000 16:20:47.662

 853 3495 1c5ft94pgu2un 67 +000000000 00:15:01.313

 854 3152 bzpgr6g0ufpfh 63 +000000000 00:18:01.594

 855 2363 6qg99cfg26kwb 47 +000000000 16:19:07.557

 855 2363 dbmt8tuqdmhkr 44 +000000000 16:25:58.109

 855 2363 40 +000000000 15:15:02.385

 821 222 dgc5zx1x3vjkn 37 +000000000 00:09:40.763

 855 2363 0r3nf6rvn31z0 36 +000000000 16:09:16.741

10 rows selected.

select

 a.sql_id

 ,a.program

 ,a.module

 ,count(1)

 ,get_sql_text(a.sql_id) sql_text

from sys.dba_hist_active_sess_history a

where 1=1

and a.instance_number=2

and a.sample_time between trunc(sysdate-1)+(14/24) and trunc(sysdate)+(9/24)

and a.session_state = 'ON CPU'

and a.session_id=855

and get_sql_text(a.sql_id) is not null

group by

 a.sql_id

 ,a.program

 ,a.module

order by 4 desc

/

SQL_ID PROGRAM MODULE COUNT(1) SQL_TEXT

------------- ---------- --------------- ---------- ------------------------------

41gah808juxk7 toad.exe TOAD 9.1.0.62 3964 begin DBMS_UTILITY.COMPILE_SCH

 EMA('MYAPPSCHEMA', FALSE); end;

Real-Time Performance Monitoring Applications

Shell Script for Monitoring CPU Utilization

The example script below illustrates a “shoestring” approach to using OSW data to depict real-time monitoring of cpu. In this example, the last record of the vmstat data every minute for the idle cpu metric, and an “ascii bar line” is formatted to print to the screen.

$ cd /osw/archive/oswvmstat

$ while [1=1]

> do

> vmfile=`ls -rt | tail -1`

> rec=`cat $vmfile | tail -1`

> idle=`echo $rec | awk '{print $16}'`

> ((cpu=100-idle))

> ((scale=cpu/2))

> printf "% 3s % ${scale}s\n" "${cpu}" "+" | sed 's/ /\-/g'

> sleep 60

> done

-69----------------------------------+

-83---+

-66---------------------------------+

-55---------------------------+

Shell Script for Alerting High CPU Utilization

Shown below is a shell script application of sending an alert upon high CPU utilization using OSW vmstat data. In this application, the vmstat data is checked every minute for 5 minutes for cpu utilization consistently above a given threshold. If that threshold is consistently reached over those 5 minutes, an email is sent. The example execution of this script below prints the vmstat rec each minute to show progress. For illustration purposes, the threshold is set low enough in the last execution to force an alert.

#!/bin/ksh

#

Alert when vmstat reports

cpu utilization >= <argument>%

for more than 5 minutes

#

threshold=$1

ctr=1

alert=Y

datapath=/osw/archive/oswvmstat

while [$ctr -le 5]

do

 vmstat_file=`ls -rt $datapath | tail -1`

 idle=`cat $datapath/$vmstat_file | tail -1 | awk '{print $16}'`

 cat $datapath/$vmstat_file | tail -1

 ((cpu=100-idle))

 if ["$cpu" -ge "$threshold"]

 then

 sleep 60

 else

 alert=N

 ctr=6

 fi

 ((ctr=ctr+1))

done

if ["$alert" == "Y"]

then

 echo $alert

 echo "The Sky Is Falling" | mailx -s"CPU Alert" walter.silva@pw.utc.com

fi

exit

$ cpu_alert.sh 90

 1 0 1896865 11109 0 0 0 7337 13936 0 628 13916 9059 4 5 89 2

$ cpu_alert.sh 10

 1 0 1896865 11109 0 0 0 7337 13936 0 628 13916 9059 4 5 89 2

 0 0 1901041 10724 0 0 0 8758 15779 0 385 10219 6223 3 5 89 2

 0 0 1896664 10324 0 0 0 7212 15186 1 345 6490 5827 3 4 91 2

$ cpu_alert.sh 1

 0 0 1896664 10324 0 0 0 7212 15186 1 345 6490 5827 3 4 91 2

 2 0 1893045 10550 0 0 0 6058 12762 0 868 40612 7688 4 5 88 3

 0 2 1739750 10084 0 0 0 6438 14123 0 527 8041 5737 3 6 83 8

 0 0 1729617 10420 0 0 0 7814 20915 0 335 6006 5493 2 4 91 3

 0 0 1731570 10507 0 0 0 7725 18360 0 374 5859 5594 3 5 90 3

The Sky Is Falling

$

OSW Graph

The OSW Graph (OSWg) component can be used for graphically depicting OSW performance metrics in real-time. An example OSWg generated graph is shown below. Although the author has not used OSWg, the following Oracle Metalink Articles 461053.1 and 461054.1 offer more information on the use of this component.

[image: image1.png]OSW CPU Utilization:
00

Idle

Seps, 2007

289

Example of OSW Graph – from Oracle Metalink Article 461054.1

Other Graphing Solutions

The following example illustrates the use of OSW data from multiple machines to graphically depict the cpu utilizations of these machines simultaneously in real-time. The charting component used is a third-party package rendered in Adobe Flash and implemented through an XML data interface.

[image: image2.png]

CPU utilization of several machines depicted through Flash-based charting component

The process to gather the supporting data is shown below in “pseudo-script”. In the “pseudo-script” below, the machines being monitored are listed, along with the path of the OSW vmstat data. This list is traversed, and ssh is used to communicate with each machine to retrieve the latest vmstat data, which in turn is parsed into an XML data interface for the above charting component.

#!/bin/ksh

. $HOME/.profile

cat >$tmpfile <<EOF

dbserver1.com,oracle,/osw/archive/oswvmstat

dbserver2.com,oracle,/osw/archive/oswvmstat

dbserver3.com,oracle,/osw/archive/oswvmstat

dbserver4.com,oracle,/osw/archive/oswvmstat

EOF

for entry in `cat $tmpfile`

do

 #

 machine=`echo $entry | awk -F, '{print $1}'`

 account=`echo $entry | awk -F, '{print $2}'`

 datapath=`echo $entry | awk -F, '{print $3}'`

 # SSH $account@$machine `get vmstat rec from $datapath`

 # Parse the data

 # Build xml data for real time feed graph

 # SSH xml file to web server

done

Loading OSW Data Into An Oracle Database

The loading of OSW data into an Oracle database can be cumbersome, not only due to the differing record formats of the metrics collected, but that some fields (such as ps command line) are inherently unformatted. Further, the capability of shell scripting is not well-aligned to easily parse and transform OSW data into a strict format for traditional database loading.

As a practice, the author uses a two-step approach for loading OSW data into Oracle:

1. Load the unformatted data into one column in a staging table.

2. Use PL/SQL to parse and format the unformatted OSW data into usable columns.

Generic SQL*Loader Script For Loading Unformatted Data

Shown below is a generic script for loading unformatted data into a staging table. Although it is presented here as a mechanism for loading OSW data, it’s use can be universal. This example script accepts 2 arguments, 1) a name for the load job, and 2) the path of the raw data to be loaded. The script builds a SQL*Loader control file to load the data into a staging table with 4 columns:

Create table mymetrics.raw_metrics (

 raw_metrics_name varchar2(100) -– Unique name for the load job

,raw_metrics_date date -- Datetime stamp data was loaded

,raw_metrics_seq number -- Record number of the row in the file

,raw_metrics_data varchar2(4000) -– the raw, unformatted data

)

load_raw_metrics.sh

#!/bin/ksh

#

USE AT YOUR OWN RISK

DO NOT USE IN PRODUCTION WITHOUT TESTING

BLAH, BLAH, BLAH

#

export ORACLE_SID=MYMETRICSDB

load_name=$1

metrics_path=$2

load_dt=`date +”%Y%m%d%H%M%S”`

BAD_FILE=/tmp/$$.bad

rm $BAD_FILE >/dev/null 2>&1

LOG_FILE=/tmp/$$.log

rm $LOG_FILE >/dev/null 2>&1

CTL_FILE=/tmp/$$.ctl

rm $CTL_FILE >/dev/null 2>&1

#

Create control file for load

#

cat >$CTL_FILE <<EOF

LOAD DATA

INFILE ‘${metrics_path}’

APPEND

INTO TABLE mymetrics.raw_metrics

fields terminated by X’A’

trailing nullcols

(

 raw_metrics_data char(4000)

,raw_metrics_name constant “${load_name}”

,raw_metrics_date “to_date(’${load_dt}’,'yyyymmddhh24miss’)”

,raw_metrics_seq RECNUM

)

EOF

#

Invoke SQLLoad to load table

#

sqlldr / control=$CTL_FILE log=$LOG_FILE bad=$BAD_FILE sqlldr_rc=$?

if [$sqlldr_rc -eq 2]

then

sqlldr_rc=0

fi

if [[($sqlldr_rc -ne 0) || (-a $BAD_FILE)]]

then

cat $BAD_FILE

cat $LOG_FILE

fi

cat $BAD_FILE

cat $LOG_FILE

rm $BAD_FILE >/dev/null 2>&1

rm $LOG_FILE >/dev/null 2>&1

rm $CTL_FILE >/dev/null 2>&1

exit

Using PL/SQL To Parse And Store OSW VMSTAT Data

Since vmstat data is reasonably straightforward to understand and parse, the associated PL/SQL code to parse and store vmstat data is a good example to illustrate the practicality of using PL/SQL to process unformatted data. The capabilities and functions of the PL/SQL language can handle much more complex parsing and formatting needs.

Once vmstat data has been loaded into the staging RAW_METRICS table, the load_vmstat procedure is called and is passed the $load_name used in the SQL*Loader script above. The pseudo-code below describes the logic for loading the data.

Loop through vmstat raw data

 If start of a new snapshot (referring to the zzz header described in “A Look Inside The Metrics Collected” above).

 Then

 Get date-of-snapshot

 If vmstat-detail-record

 Then

 Parse into fields and write to table with date-of-snapshot

 End-if

 End-if

End-Loop

Excerpts from the actual pl/sql program written to the above spec are shown below. Note the reference to called generic routines to facilitate the parsing of data (code not shown for brevity)

1. Function get_date_from_zzzheader, which reads a “zzz” header OSWatcher produces to retrieve the date and time of the vmstat snapshot.

2. Function parse_into_char_table, which passes a record with delimited fields, and returns an array of those fields. In this case, the different vmstat fields are parsed by whitespace delimited and returned. Each element in the returned array corresponds to a column in the MYMETRICS.VMSTAT table.

CREATE OR REPLACE PACKAGE BODY mymetrics.P_Vmstat

AS

–

–

————————————————————————–

PROCEDURE load_vmstat (in_load_name VARCHAR2)

IS

CURSOR c1

IS

SELECT trim(raw_load_data) raw_load_data

FROM mymetrics.raw_metrics

WHERE 1=1

AND raw_metrics_name=in_load_name

ORDER BY raw_metrics_seq

;

tChar mymetrics.Common.char_table_type;

…

…

…

FOR v1 IN c1

LOOP

 vRow:=v1.raw_load_data;

 IF SUBSTR(v1.raw_load_data,1,7)=’zzz ***’

 THEN

 vDate:=mymetrics.Common.get_date_from_zzzheader(v1.raw_load_data);

 END IF;

 …

 …

 …

 IF bVMSTAT_detail_record

 THEN

 tChar:=mymetrics.Common.parse_into_char_table(vRow,’ ‘);

 BEGIN

 INSERT INTO mymetrics.VMSTAT

 (

 TIMESTAMP

 ,kthr_r

 ,kthr_b

 ,kthr_w

 ,memory_swap

 ,memory_free

 …

 …

 …

 ,cpu_sy

 ,cpu_id

)

 VALUES

 (

 vDate

 ,tChar(00)

 ,tChar(01)

 ,tChar(02)

 ,tChar(03)

 ,tChar(04)

 …

 …

 …

 ,tChar(20)

 ,tChar(21)

)

 ;

 EXCEPTION WHEN OTHERS

 THEN

 …

 …

 …

 END;

 END IF;

END LOOP;

COMMIT;

EXCEPTION WHEN OTHERS

THEN

…

…

…

COMMIT;

END;

————————————————————————–

END;

/

Capacity Planning/Forecasting

When OS metrics collected by OSW are coupled with Oracle AWR performance metrics, supporting “actual” data now exists to perform capacity planning and forecasting analysis. This is accomplished by correlating these actuals and applying traditional statistical mathematics. For such analysis, it is recommended that raw OSW data (particularly vmstat) be loaded into tables in an Oracle database, as the sql and analytical functions of Oracle greatly facilitates the effort.

The example forecasting scenario played out below considers the question, “How much additional workload can my system endure before it chokes?”. For illustration purposes, queuing theory formulas will be used as the method for performing the forecast. It is beyond the scope of this white paper to discuss queuing theory and other forecasting methods. However, for completeness, such formulas used in the examples will be depicted.

· Step 1 – Gather cpu utilization averaged on the hour from OSW/vmstat data loaded into the database (see “Loading OSW Data Into An Oracle Database” above). The reason for averaging cpu to the hour is because it will be correlated to SYSSTAT “user calls” from AWR below. The AWR is an hourly snapshot, and therefore the correlation to cpu requires temporal match.

ops$oracle@MYDB>

select

 to_date(to_char(timestamp,'yyyymmddhh24'),'yyyymmddhh24') timestamp

 ,round(avg(100-cpu_id),0) cpu

from mymetrics.vmstat

where 1=1

group by to_date(to_char(timestamp,'yyyymmddhh24'),'yyyymmddhh24')

/

TIMESTAMP CPU

------------------- ----------

2008-02-12 00:00:00 37

2008-02-12 01:00:00 47

2008-02-12 02:00:00 35

2008-02-12 03:00:00 20

2008-02-12 04:00:00 30

2008-02-12 05:00:00 31

2008-02-12 06:00:00 22

2008-02-12 07:00:00 32

2008-02-12 08:00:00 44

2008-02-12 09:00:00 39

2008-02-12 10:00:00 46

2008-02-12 11:00:00 33

· Step 2 – Gather “user calls” stats from the AWRs of all instances running on same machine. This data is stored in SYS.DBA_HIST_SYSSTAT. Be advised this data is stored cumulatively, so it will be necessary to calculate for the deltas so they can be returned in the query.

ops$oracle@MYDB>

with arrival_rate as (

select

 to_date(to_char(b.end_interval_time,'yyyymmddhh24'),'yyyymmddhh24') end_interval_time

 ,a.*

from sys.dba_hist_sysstat a

 ,sys.dba_hist_snapshot b

where 1=1

and a.stat_name='user calls'

and a.instance_number=1

and a.snap_id=b.snap_id

and a.dbid=b.dbid

and a.instance_number=b.instance_number

select * from (

select

 end_interval_time

,value-(lag(value) over (order by end_interval_time)) delta_user_calls

from arrival_rate

)

where 1=1

and delta_user_calls is not null

/

END_INTERVAL_TIME DELTA_USER_CALLS

------------------- ----------------

2008-02-13 01:00:00 126491

2008-02-13 02:00:00 285811

2008-02-13 03:00:00 185321

2008-02-13 04:00:00 125783

2008-02-13 05:00:00 128943

2008-02-13 06:00:00 157613

2008-02-13 07:00:00 198271

2008-02-13 08:00:00 251759

2008-02-13 09:00:00 358033

2008-02-13 10:00:00 445451

2008-02-13 11:00:00 525743

2008-02-13 12:00:00 478322

2008-02-13 13:00:00 448826

· Step 3 –Scrub the data retrieved in steps 1 and 2 to eliminate negative numbers and other outliers where there may have been performance anomalies. The example below illustrates use Microsoft Excel scatter graph to perform this step.

[image: image3.png]GPU % Forecast Errc
Total User Calls_ GPU Snapshot ___ (U) A (ms) _ S=UM/A (ms) 100(SK)/M For:
187991 1/16/2008 1:00 24 0.05222 73.53543521 17.060442 6
406299 1/16/2008 2:00 23 0.112861 326065269 36.872194 -1
217613 1/16/2008 3:00 27 0.060448 71.46631665 19.748673 7
214427 1/16/2008 4:00 32 0.059563 05.95032415 19,459545 1
1202 171672008 5:00 008147 6507230304 20082554 4

N 214428 -2

Total User Calls Over Consecutive Hours Sro0eal -4

342248 -4

1000000 216611 -1
364431 -1

249246 -2

750000 44639 -1
659143 -7

166987 -1

500000 651552 -1
029195 -2

679263 -3

990491 -2

250000 670239 -1
079837 9

229395 4

0 099878 -5

0 200 400 600 800 537701 -3
200136 -0

Scatter graph (and supporting data) depicting user calls per snapshot period

· Step 4 – Apply the appropriate queuing theory formulas to the scrubbed data to establish a baseline and perform subsequent forecasting. In the example below, Microsoft Excel is further used to apply the formulas and forecast a relative response time change as workload increases.

[image: image4.png]% WL
Change

-15%
-14%
-14%
-13%
-13%
-1200
-11%
-11%
-10%
-10%
-9%0
-8%
-8%
-7%
-7%

Workload Workload Utilization Response Queue
(uc/ms) ime Length
(ue/hr) A U RES/GEUSM) Q=(MU/(-UM)M
797452.15 0221514 720 52.5704163 “4.354891248
80308120 0220078 73% 52.60600585 “4264731154
8087103 0224647 739 52.64578766 -41178558159
. 7094
Forecast Response Time w/Volume Change 0202
5761
B 2654
F 8077
2 6737
: 2506
§ 1634
= 13636
T T s
% Change in Workload 7103
3853

Workload increase forecast graph and supporting data/formulas

Conclusion

This whitepaper has demonstrated why the author sees OSW as more than just a component for Oracle Support diagnostic purposes, but as a practical every day tool for tactical and strategic functions. It can be immediately useful out-of-the-box, and examples have been given on how OSW and supplied Oracle performance metrics can be used to provide a full picture for diagnosing performance issues and facilitating alerting/monitoring processes. Further, the same metrics can be used as supporting data for forecasting and capacity planning.

�	 OSW’s User Guide, Oracle Metalink Article 301137.1

�	 OSW’s User Guide, Oracle Metalink Article 301137.1

�	 OS Watcher Graph (OSWg) User Guide - Oracle Metalink Article 461053.1

�	 The workload increase scenario shown in this whitepaper was patterned from Orapub’s Basic CPU Forecasting Excel Workbook (orapub.com)

16

 Paper 346

