Middleware


What’s your number? Keeping employee information updated with Oracle Internet Directory and Portal
Thomas McGrath, IT Convergence


Introduction
In today’s Oracle environments, many companies often run Oracle Applications as the centerpiece of their ERP strategy. These same companies will most likely run Microsoft Active Directory (MAD) to provision user access to resources including shared drives and will also use it for the purposes of email (coupled with Microsoft Exchange) as well. In most cases, these companies use MAD as a corporate directory with the same information duplicated in the Oracle ERP environment. Not only does this inadvertently duplicate data, but there is a strong chance that the information in Oracle is more up to date. This means that the Information Technology department now has the task of ensuring both sets of data remain updated.  How likely are they to do this? Or, more precisely, how likely are they to be able to do this at a reasonable cost while ensuring system uptime? It is hard to be certain because IT departments differ between organizations though generally an IT department is far more consumed with and interested in technical tasks. The Human Resources department is probably already responsible for maintaining this information through the Oracle Applications Human Resources module. An HR department, after all, should be responsible for tracking employee personal information. Likewise, in an ideal situation Oracle would provide One Source of Truth for employee data. This paper details a solution that accomplishes just that.

The solution outlined within empowers an organization’s HR department as the keeper of all employee information. Arguably, this is a sound strategy that should make sense in any business. Now, what about the IT strategy to make this as painless as possible to manage? Let’s go back to a question posed earlier- the HR department is far more likely than IT to maintain updated employee information. With that said, HR staff are probably engaged with more important tasks than the upkeep of employee telephone numbers, email addresses or office locations. What about the end-user? When a phone number changes or a move to another office location occurs, why should he or she have to rely on someone from HR to update the information, when the employee can do it right away? The answer is that there is no reason for this when the tools are available within Oracle Portal and OID, and this paper will show you how to use Oracle Portal and OID to your advantage to serve as a Corporate Directory.

Software Architecture - The Ideal Solution
There are several software architectures that support this solution, but the most ideal one centralizes user information and access on Oracle Internet Directory (OID). OID’s user provisioning options are excellent. OID integrates well with other LDAP directories, making this architecture even more ideal. This proposed architecture may present too great of a challenge for an organization that may be more comfortable with a synchronization process between OID and Microsoft Active Directory and that is understandable. If that is the case, the best practice is to keep passwords in one place (MAD or OID) and delegate one to the other to authenticate users. 
Taking this design a step further, integrating Oracle Applications with OID and SSO centralizes employee data within the Oracle framework but it also synchronizes with MAD enabling delivery of the most up-to-date information through the Address Book on Outlook. Oracle Portal is already integrated with and includes OID and SSO. Portal’s framework is ready to support a universal Corporate Directory with information delivered from existing software applications with a mechanism for delivery and update over a company intranet site. Note that even without Exchange or MAD, this solution still stands well when coupled with Oracle Mail (part of Collaboration Suite) for email. 

The architecture above sounds like perfect world scenario and it is. However, deploying such an architecture is not easy but the lends itself as a model of how to leverage the available Oracle tools. This brings a situation in which the responsibility of updating employee information is shared between the employee and the organization’s HR department, allowing IT to remain focused on systems continuity and new developments. 

Software Architecture in the real world

Now, for a moment of truth- this solution has not been implemented in an environment with the software architecture described above. All environments are different and this directory was developed as part of an Oracle Portal Intranet project. Drastically changing the environment structure to fall inline with the perfect world scenario was not an option. This solution was implemented in an environment requiring manual sync processes to take employee information from Oracle Applications HR tables and then synchronize this information into Oracle Internet Directory serving two purposes. First, it would allow the employee to gain access to the company intranet in Oracle Portal. Second, it would also make the individual’s personal information available for searching; likewise it would serve as a base for employees to correct their information. Note in this scenario, that the information is traveling in a single direction from Oracle HR to OID and if the employee record already exists in OID, it is not overwritten or re-created. But, running a comparison between OID and the HR tables is an available option in addition to a future integration to arrive closer to the perfect world scenario.
Why Custom Development?

With this architecture and underlying organizational structure as the backdrop for our discussion of developing a Corporate Directory application within Oracle Portal is the next question: Why custom develop this? Isn’t this functionality already included out-of-the-box as part of Portal and its tight-knit integration with OIDDAS (Delegated Administrative Services) interfaces? Yes, these are already available. OIDDAS is not known for its user friendliness and it is quite easy to envision a huge volume of calls to the Help Desk on a daily basis should end-users be forced to use OIDDAS. Also consider the design and layout of an intranet site. Since the design, layout and navigation were already part of the Intranet site, placing a directory application into Portal makes more sense than offering the existing tools to end-users, losing complete control over the design and behavior of the user experience.
[image: image1.jpg]
(Screenshot of the Profile Update screen from OIDDAS)
Custom Portlets 101

Anytime custom functionality or an application is required within Oracle Portal, it is most often written as a Custom Portlet. Custom Portlets offer the features of PL/SQL and may be added to any page on a Portal instance with a Portlet Region. A couple of options exist when creating Portlets. First, Custom Portlets can be implemented as Packages called from a Dynamic Page that is created within a Locally Built Provider which is exposable as a Portlet. The second and cleaner option of implementing a Custom Portlet is to code a Provider, exposing the Portlet Packages within the Portal Repository’s Staged Objects page.
 This is a best practice as it affords maximum control, adds a minimal amount of extra work, does not duplicate efforts and the Custom Portlet architecture is much more transparent when changes are required. 
hello world
To properly implement a Custom Portlet from scratch within Oracle Portal requires a few steps of preparation prior to coding the Provider and Portlet Packages. Invariably, the best practice is to create a custom schema in the database to store all of these custom objects. It is not a good idea to store them in the PORTAL schema as a high possibility exists that these would be overwritten on an upgrade. Some standard database grants need to be made on this schema including resource, connect and create procedure. Additionally, to call the Portal APIs directly, Portal includes the provsyns.sql script located in /portal/admin/plsql/wwc/ on the Middle-Tier Oracle Home to create synonyms for the custom schema. This script is run as the PORTAL database user which you must retrieve the password for it. This password is randomly generated at the time of installation; trying passwords for SYSTEM, orcladmin or other privileged users will not work. To retrieve the PORTAL database user password, follow MetaLink Note: 198800.1 (written for Portal version 9.0.x, but still applies).

In the example code provided from the ZIP file with PL/SQL samples, much of the code is replicated on each Custom Portlet’s Package. Instead of repeating this code on each Custom Portlet package, simply move it to a Package called PROVIDER_TOOLS so that the code is more manageable from one place. This will require modification of the PROVIDER Package to correct the pointers to these objects. Best practice when naming both Custom Portlet Packages and the reference on the PROVIDER Package Specification is to use similar names for both to reduce future confusion and include comments specifying both for additional transparency. For example, since this is the Corporate Directory for Acme, Inc, the name ACME_EMPDIR would be appropriate for the Portlet Package. Then, for the reference to the Portlet from the Provider, use PORTLET_EMPDIR so that the ending combination of letters is the same. Following this naming system ensures both consistency and clarity.

Registering the Provider is the next step once all of the packages are compiled. The registration process is accomplished from Portal Navigator. Click on Providers then Registered Providers and Register a new DB provider pointing to the custom database schema and the Provider package, enter a timeout (30 seconds) and message for display when the Provider times out. For example, “The provider has timed out after 30 seconds.” For the Portlets and the Provider to be accessible, you will need to Refresh the Portlet Repository from the Portal Builder > Administer Tab > Portlets Sub-Menu. Once this is completed, we can place the Portlet on a Page. Beforehand, consider adding a message to display with the HTP.P which is the DBMS_OUTPUT.PUT_LINE for a web page. Note that this should be inserted between the code to display the borders of the Portlet. In the code displayed below, we will print the standard “Hello World!” output so we know it works.
IF (P_PORTLET_RECORD.HAS_BORDER) THEN

WWUI_API_PORTLET.OPEN_PORTLET(P_PORTLET_RECORD.HAS_BORDER);

END IF;

-- begin Portlet code


HTP.P(‘Hello World!’);

-- end Portlet code

IF (P_PORTLET_RECORD.HAS_BORDER) THEN

WWUI_API_PORTLET.CLOSE_PORTLET;

END IF;
OID Configuration: Attributes, Profiles, Search, Pitfalls

With a Custom Portlet displayed on a Portal Page, it is time to begin developing the search functionality. Most common Attributes already exist within Oracle Internet Directory including Work Phone, Mobile Phone and Pager, for example. Do take care to note differences between the Display Name and the Attribute Name when enabling Attributes within OIDDAS for display on the User Profile. The Attribute Name for Work Phone, for example, is telephoneNumber which could be an individual’s Home Phone. The way to tell the differences is by looking at the User Entry Configuration within OIDDAS. Here, OIDDAS displays OID Attribute Name with the UI Label, or Display Name.
Suppose other attributes are needed to store and display additional employee information. Attribute creation in OID requires providing an Attribute ID to act as an LDAP identifier during creation through Oracle Directory Manager (ODM). As documented in MetaLink Note: 356276.1, all custom Attribute IDs should begin with 1.3.6.1.4.1.5555.1.1. For example, a field may be necessary to store a secondary Work or Home phone number. No problem! Create the attributes and then add to the inetOrgPerson Object Class. The best practice, however, is to create a new Object Classes for any custom objects, adding the Object Class through OIDDAS under Configure User Object Classes to expose the Custom Attirbute as part of the User Profile. After creating a new Object Class or Attribute, the OC4J_Security process must be bounced so that the new Attributes and Object Classes are visible in OIDDAS; allowing management of the Attributes displayed in a user profile which will take effect in Portal’s user management as well. 

Make sure that the Attributes that are needed for search are checked in OID under the Indexed column to avoid a common though less than documented pitfall. If there is no checkmark for an Attribute, it is not searchable. Searching an attribute that is not Indexed will return an ORA-31202 error specifying “LDAP client/server error: DSA is unwilling to perform. Function Not Implemented.” Running the catalog.sh script located in $ORACLE_HOME/ldap/bin on that attribute create the Index for search on an Attribute. Usage is available from the Oracle Identity Management User Reference.
Search with DBMS_LDAP

With a Portlet displaying “Hello World!” and Attributes set within OID and OIDDAS, let’s examine OID and how to code against it with PL/SQL. A good way to get this right is to build a SQL file as it provides instant results including full error messages which are incredibly useful when learning usage and testing. Utilizing the following line in the script will allow exceptions to be raised.
DBMS_LDAP.USE_EXCEPTION := TRUE;

Next step is to call the DBMS_LDAP.init procedure which will invoke a connection to your host machine on any port (default is 389). Issue a bind to the directory with DBMS_LDAP.simple_bind_s referencing the open session while providing privileged LDAP user credentials. 

my_session := DBMS_LDAP.init(ldap_host,ldap_port);

retval := DBMS_LDAP.simple_bind_s(my_session, ldap_user, ldap_passwd);

Bundling the Attributes required for the search results into a string collection is a requirement for searching OID. So- if the results desired are the Canonical Name, the individual’s First Name, Last Name and email, they would be added to the collection get_attrs like this:

get_attrs(1) := 'cn'; 

get_attrs(2) := 'givenname';

get_attrs(3) := 'sn';

get_attrs(4) := 'mail';

To lookup a Last Name beginning with “McGrat%” in the directory, the following search filter would be utilized:

my_filter := 'sn=McGrat*';

Querying OID is different than querying an Oracle Database; it requires different characters so that it can tell the difference between a search term and a condition. Notice that in the filter above the asterisk (*) is the same as using a percentage sign (%) in a SELECT statement. Some of the other useful characters specify AND, OR and NOT conditions within the search strings. OR conditions are specified with the pipe (|) character, AND conditions are denoted by an ampersand (&) and NOT conditions are specified with an exclamation point (!). So, if a query were required to search for a Last Name of McGrath AND a First Name of Thomas, the filter would become:

my_filter := '(&(sn=McGrath)(givenname=Thomas))';

Utilizing conditions requires utilizing parenthesis as shown above. What may seem like extra effort really is important so that queries may specify additional groupings of search terms. If looking for results where the Last Name is McGrath or the First Name is Thomas, the ampersand would become a pipe. Or, for a very large search, an exclamation point would return all results where the users First and Last Name are not Thomas nor McGrath.
Ready to issue a search, DBMS_LDAP.search_s receives the session ID, LDAP Base for the query (which can be found in Oracle Directory Manager- usually similar to cn=Users,dc=acme,dc=com), the scope of the search (in this case, the entire subtree), the filter defined above, the attributes we would like returned from our collection, 0 to specify retrieval of value and attribute pairs and the variable where the search results will be stored for later calls.

retval := DBMS_LDAP.search_s(


   my_session, 


   ldap_base, 


   DBMS_LDAP.SCOPE_SUBTREE,


   my_filter,


   get_attrs,


   0,


   my_message


   );

Counting the number of entries from OID that are returned from the search defines the number of LOOP iterations to print results. The second line of code below retrieves the first search result entry with the next line utilizing an index to keep track of which search result is currently displayed; it will be incremented for each LOOP pass-through. Note the my_entry variable will store all of the information for the current result and we can count on it to exit from the LOOP when search results no exist.

retval := DBMS_LDAP.count_entries(my_session, my_message);

my_entry := DBMS_LDAP.first_entry(my_session, my_message);

entry_index := 1;

The Distinguished Name of the current entry may be pulled with the GET_DN function:

my_dn := DBMS_LDAP.get_dn(my_session, my_entry);

Relying on a variable to do the same as the my_entry variable for the Attributes within another LOOP, it is possible to trap the details of each user’s entry with IF statements evaluating the current my_attr_name value. This will store the individual’s data into the variables for later retrieval within the LOOP. Below is code that LOOPs through the current entry’s Attributes (specified above) and if the current one is the mail attribute which stores an individual’s email address. This is technique useful for the final output from the Custom Portlet.
while my_attr_name IS NOT NULL loop


my_vals := DBMS_LDAP.get_values (my_session, my_entry,my_attr_name);


if my_vals.COUNT > 0 


then



for i in my_vals.FIRST..my_vals.LAST 



loop




DBMS_OUTPUT.PUT_LINE(my_attr_name || ': ' || my_vals(i));




IF my_attr_name = 'mail'




THEN




   l_mail := my_vals(i); 




END IF;



end loop;


end if;


my_attr_name := DBMS_LDAP.next_attribute(my_session,my_entry,my_ber_elmt);


attr_index := attr_index+1;

end loop;

my_entry := (my_session, my_entry);

entry_index := entry_index+1;

After cycling through the attributes for the current entry, it is not necessary to use DBMS_LDAP.next_entry to continue with the next result entry; calling DBMS_LDAP.next_attribute nudges the results pointer to the next result once it is finished retrieving the requested Attributes for the current user entry. Again, it is possible to rely upon the returned NULL message at the end of the LOOP when no more results exist, terminating the LOOP. Of course, the same will occur on the outer LOOP which moves through each result entry.

It is a requirement that when working with DBMS_LDAP that the code unbind from the directory with DBMS_LDAP.unbind_s referencing the open session or the application will not terminate the connection. As a best practice, make sure that this is written into the Exception section as well, ensuring that the connection is always terminated even when an error occurs. If many connections are left open due to unhandled exceptions, a bounce of the OC4J_Security process will be necessary if not a full Infrastructure tier bounce to clear the open connections.
Update with DBMS_LDAP

Updating an entry’s information within OID is slightly different than the search code discussed above. Since retrieval of the current user who is logged into Portal is possible with portal APIs, it is possible to run a search on the user and, with an array of Attributes and Values, call DBMS_LDAP.create_mod_array with the number of pairs setting up the required population with DBMS_LDAP.populate_mod_array by way of a LOOP for each of the pairs.
update_array := DBMS_LDAP.create_mod_array( update_count );

FOR i in 1..l_values.count

LOOP


update_vals(1) := l_values(i);


DBMS_LDAP.populate_mod_array (



modptr => update_array,



mod_op => DBMS_LDAP.MOD_REPLACE,



mod_type => LOWER( l_attributes(i) ),



modval => update_vals


);

END LOOP;

Once the LOOP has terminated, the user profile is updated by calling DBMS_LDAP.modify_s referencing the session, current user profile Distinguished Name and array populated in the LOOP containing the Attribute and Value pairs for update.

update_ret := DBMS_LDAP.modify_s (


my_session,


my_dn,


update_array

);

It is a best practice to call the following which will free memory allocated to store the new user details after it has been successfully stored in OID.

DBMS_LDAP.free_mod_array(update_array);

Once the update is completed, unbind from the directory to terminate the connection.

Custom Portlet Directory Search Implementation

In terms of the Custom Portlet and integrating the OID functionality within a Portal page, wwpro_api_parameters.get_value is a great asset as it allows passing of attributes. With an IF-ELSIF-ELSE structure within the Custom Portlet, multiple functions may be developed within the same Portlet and most of the code including variable definitions may be reused for each. For the purposes of this Custom Portlet, values will be passed through the URL or with forms through the submit variable which are readable to the Custom Portlet as coded below.
l_submit := wwpro_api_parameters.get_value

(


p_name => 'submit',


p_reference_path => p_portlet_record.reference_path

);

The requirements for Corporate Directory translate into Search (ELSE), Results (IF), Profile View (ELSIF) and an Update (ELSIF). When no value is assigned to the submit URL attribute, the end-user is presented with the search screen. Within each of the IF-ELSIF sections, it is possible to reuse wwpro_api_parameters.get_value to pull in other attribute pairs for searching as well as updating submitted user details within the directory.
HTML Search Form
Bringing a custom Portlet to life requires some HTML. Developing a search form to submit the search terms begins with a FORM tag specifying what URL the information should be sent to and how. Dynamically retrieving the URL of the current page and storing it under a variable (p_page_url, in this case) is incredibly useful because it allows placement of the Portlet on any page without changing the URL manually since the FORM should always submit back to the page on which this Custom Portlet exists, it is one less tedious item to deal with when moving between development and test systems as well as other Pages.
For the method property, POST is specified but it could be GET. GET will pass the information via the page URL which is not preferred for a myriad of reasons including bookmarks that will break in the future when the code is modified and not to mention, the least of which, security. To illustrate the bookmark issue, a search is issued, the results are bookmarked and later referenced but an error is thrown because the code no longer receives the values passed in the URL as the developer has changed the URL variable wwpro_api_parameters.get_value pulls its value from. With enough end-users in an organization this opens up a full-time job for a developer on the IT staff. 
<form name="associateDirectory" action="' || p_page_url || '" method="post"> 

Attributes and Values will need to be passed within the FORM telling the Portlet to conduct a search which will open up the IF section of the code as it is written to search against OID and provide the expected output. Since the search parameters are something that our user is not interested in, it is included as a hidden value.

<input type="hidden" name="submit" value="search">

<input type="text" name="name" maxlength="100" class="namesearchsquare">

<select name="results" class="selecttablemaxresults">


<option value="10">10

<option value="20">20


<option value="30">30


<option value="40">40


<option value="50">50

</select>

Notice that included within the form is a text input to pass name values which will be parsed with the wwpro_api_parameters.get_value Portal API within the search portion of the Custom Portlet. Of course, it is possible to search more than one Attribute including Office Location and Business Category or Department though this is certainly not an exhaustive list. 
Anticipation of possible end-user mistakes is one of the most important steps when developing a search form. The goal of the search after all is to ensure the most relevant results. If the results do not return properly because of bad user input then the end-user decides that the search does not work. To avoid this issue and increase the value of the Corporate Directory providing pre-existing values with drop-down (SELECT) menus. Users may then select a “canned search” term that is most likely to contain typos or data mismatches if entered by hand. Imagine someone typing out the name and address of an office location without any errors when the correct form for the search is “Office Name-Location.” It is usually not good idea to hold anyone accountable for tasks we cannot handle ourselves.
Since the required inputs are included above, include a submit button at the bottom which will be an image along with the closing FORM tag.

<input type="image" src="search.gif">

</form>
[image: image2.jpg]
 (Directory Search Screen)
Searching OID with Submitted Search Terms
Examine for a moment what will occur with the search terms after posting them to the Custom Portlet. Because the value of the submit attribute will be “search,” the contents of the form will be read from the IF l_submit = search condition. Within this condition, the Custom Portlet’s local attributes will receive the values posted from the form via the wwpro_api_parameters.get_value Portal API. 

In terms of the name value entered on the FORM, this could be a First Name, Last Name, both or in the form “Last name, First Name.” Though a bit complicated to deal with, this is as simple as including the AND, OR conditions on the OID search string. At this point, it the code has determined that a name was submitted as a search term using logical tests and setting BOOLEAN flags as a result of those tests.

The TRIM function is incredibly useful as it clears any extra spaces created by the end-user at the end of the search terms. It is a good alternative to REPLACE for empty spaces because REPLACE would remove all spaces including the one separating the First Name from the Second name. In this case, removing the spaces at the end of terms improves the search string passed against OID which, unless there was a space in a user’s name, would not return correctly.

Utilizing the INSTR function, it is possible to determine if the search terms are submitted in the form of Last Name, First Name by searching for the comma returning a zero if it does not exist or the character position value. So, if the number zero is returned from INSTR, assume it is a search on First Name Last Name or one of those Attributes. Otherwise, search by First Name, Last Name. If no space exists between the terms, it must be a First Name or Last Name search. 
An OID search solely based on the sn or givenname Attributes presents a bad search on nicknames such as Jim for individuals named James. Most employees that know this individual will search for Jim instead of James and the desired result will not return. However, running the First Name term against the displayname and Known As Attributes will improve search results for these individuals.
If employees are no longer with the organization, it is best practice not to include a listing in the Corporate Directory. For this reason, specify that either (pipe) the orclactiveenddate must be greater than today’s date or is not (exclamation point) equal to anything. The latter serving the stated requirement as a reliable IS NOT NULL condition. 

IF INSTR(l_name,',') = 0

THEN


-- ORIG last name only search


l_nametrim := TRIM(TRAILING ' ' FROM l_name);


-- If no space between first name and last name, must be a first name OR last name search


IF INSTR(l_nametrim,' ') = 0


THEN


l_oid_namequery := '(&(|(sn=' || l_name || '*)(givenname=' || l_name || '*)(displayname=' || l_name || '*))(|(orclactiveenddate>=' || l_date || ')(!(orclactiveenddate=*))))';


-- Otherwise, it is a first name AND last name search


ELSE



l_namespacepos := INSTR(l_nametrim,' ');



l_firstnamesearchterm := SUBSTR( l_name, 0, l_namespacepos-1 );



l_oid_namequery := '(&(sn=' || SUBSTR( l_name, l_namespacepos+1, LENGTH(l_name) ) || '*)(|(givenname=' || l_firstnamesearchterm || '*)(displayname=' || l_firstnamesearchterm || '*))(|(orclactiveenddate>=' || l_date || ')(!(orclactiveenddate=*))))';


END IF;

ELSE


l_fullnamesearch := TRUE;


l_namecommapos := INSTR(l_name,',');


l_firstnamesearchterm := SUBSTR( l_name, l_namecommapos+1, LENGTH(l_name) );


l_oid_namequery := '(&(sn=' || SUBSTR( l_name, 0, l_namecommapos-1 ) || '*)(|(givenname=' || l_firstnamesearchterm || '*)(displayname=' || l_firstnamesearchterm || '*))(|(orclactiveenddate>=' || l_date || ')(!(orclactiveenddate=*))))';

END IF;

Enabling other search criteria on the FORM requires determining if other search terms were submitted to build a proper filter string with which to search OID. Value tests with BOOLEAN flags are incredibly useful for this purpose. Did someone search on the Business Category or Office Location? We can test these terms with LENGTH and then rely on the BOOLEANs to help construct the search string passed against OID thereafter. From this point on, initialize a connection to OID, bind to the directory and issue a query trapping the requested Attributes of each entry for printing to the page with an HTML Table.
Displaying Search Results on a Page
Printing a row in a HTML table for each Entry with multiple Attributes is difficult to accomplish in a LOOP that cycles through each Attribute value tied to the Entry offers a challenge to laying out the data correctly. As described above in more detail, trapping the Entry Attributes and storing them temporarily into local variables within the attribute LOOP allows the output to become as simple as the following code at the termination of the Attribute LOOP for the current Entry:

HTP.P('<tr>


<td><a href="' || p_page_url || '&submit=profile&user=' || l_cn || '">' || l_fullname || '</a></td>


<td>' || l_displayname || '</td>


<td>' || l_location || '</td>


<td>' || l_businesscat || '</td>


<td>' || l_phonenum || '</td>

</tr>');

This will display the desired row within an HTML table including the First and Last Name together with Nickname, Location, Business Category and Phone Number. Recall that the search FORM also includes a drop-down allowing selection of the number of results to display.
[image: image3.jpg]
 (Search Results Display)
Paginating OID Search Results
Accomplishing this functionality is a matter of mathematics and displaying the current selection of search results by specifying begin and end points of the FOR LOOP which prints the returned Entry results from OID to the Portal Page. If the number of search results is less than the maximum, no extra logic is required as there will not be a Previous Page, Next Page or Last Page. These are all on the current results page.

Dealing with many search results for a query and pagination through them is a function of the total number of results but also which page of those results the end-user is currently viewing and the maximum number of results. Add some logic to this function and we are resubmitting the original search when clicking the pagination buttons and including the current page that the user is on. With this information posted to the page, the correct set of results are displayed.
Displaying a User’s Profile
Note that the first TD of the code to display a result entry contains an anchor link (<a href=””></a>). This link will pass profile as the submit value and an entry’s user ID. On the profile condition, a search is run on the individual’s Canonical Name (cn) to display additional profile attributes.
[image: image4.jpg]
(User Profile Display)
Profile Update Functionality and Access Definition
Portal’s wwctx_api.get_user API provides the ID of the current user that is logged in. If the current user matches the user name of the current profile, the end-user may update the profile. To help users avoid having to search for their entry to update a profile, a link on the search will take the user to the update profile condition. The update condition displays the same as the profile view but includes HTML text inputs, but passes variables for those that a user may change. A hidden input for the submit attribute of edit with another attribute is passed that runs code against OID to update the user’s profile when submitted. 
[image: image5.jpg]
(User Profile Edit Display)
Returning the end-user to the Profile Update following submission of the new information after it is stored into OID is a good best practice. Displaying the updated information after submission offers a second chance to make sure the information is correctly entered and gives users a chance to directly enter any other changes needed. A View Profile link from the Update page returns the user to the earlier-discussed Profile Display.
Make It Look Pretty!
One of the principal drivers in developing this Corporate Directory was greater usability for end-users. Included in usability is design, look and feel which are commonly accomplished in web development with a mixture of HTML and Cascading Style Sheets (CSS). The HTML code discussed is going to change very little as it only lacks calls to classes defined within the style sheet which will format the calling HTML with the CSS specified.

Examine the code on the Search Page for a moment. Note that the search box is styled with a green border. How is this accomplished? Within the CSS file, a class is created with a name of namesearchsquare which defines the border as green and one pixel wide:

.namesearchsquare {


border: #d3d975 1px solid; 

}

Within the HTML in the Custom Portlet code for the text input, reference the CSS by adding class="namesearchsquare" which will pull the style specified from the style sheet and format the HTML markup as desired. 

The situation is similar on the Search Results Page but will require definition of font weights, background color and the color of the font:

.assocresgreytable {


border: #000 1px solid; 

font-weight: bold; 

   
background: #999999; 

    
color: #ffffff; 

}

The HTML TD tag may then call this by adding class="assocresgreytable" within the Custom Portlet procedure. Very similar code may be used on the actual search results which should look different than the column headers. 

In fact, the HTML TABLE could use some formatting to bring it inline with the wireframes. Creating a class within the CSS and calling it from the HTML is the solution. However, the table may not display as desired; too much space exists on the table borders between cells. Include “border-collapse: collapse” within the table class on the CSS within the style sheet to resolve this display issue.
Next Steps, Conclusion
Implementing an Corporate Directory application as an Oracle Portal Custom Portlet developed against OID offers full control over the design and behavior of the user experience. This extensible architecture is well-suited to handle other requirements. Future requirements may include links to third-party organization charts or send an instant message or the possibility of messages displayed when a user updates an Attribute. Offering a situation wherein IT has full control over the delivery and presentation layers of this Corporate Directory application opens the possibility of future enhancements while reducing the barriers to accomplishment and ensuring phone numbers are kept up to date within an organization.
� Of course, it is possible that an organization runs another HR management system. Depending on what output is available, the solutions discussed here may only require that the third party HR system have the ability to output employee data to a text file.

� Starter code to write a Custom Portlet is available from the Oracle Portlet Developer Kit Page (http://www.oracle.com/technology/products/ias/portal/pdk.html) under the Oracle PDK-PL/SQL Downloads heading is a ZIP file with PL/SQL samples, API, and articles included.




13





          Paper #503


