Database – Backup/Recovery

You Can Never Have Too Many Backups
Michael S. Abbey Ntirety
Preamble
This topic is hopefully by no means new to any of us. Many inherit backup procedures from our predecessors. As long as these routines leverage state-of-the-art Oracle offerings, they need no attention. Whether we are tasked with recovering from backups authored by others or ourselves, testing is the heart of an industrial strength disaster recovery. I often speak about the importance of the sometimes-forgotten recovery testing phase, and compare it to the backup phases as follows … position yourself 2-3 metres from an audience, and whisper the word backup. Then yell at the top of your voice using a volume that could be heard in Asia … and recovery.
Some of the material/code I have included in this paper will only work after setup has been done beforehand. Oracle data pump is a good example. A directory must be defined for writing and privileges given out to the user from where the data pump will run. As well, some of the numbered steps in the way I suggest doing something are over-simplified and high-level to illustrate how a logical or physical backup can be used. If and when you have the opportunity (or misfortune) to do something similar to my discussion, the checklist from which you work may have dozens and dozens more steps.
At your service senor/a/ita
Backups fall into two main categories:
1. Logical backups—make a snapshot of your data at a point-in-time when data/metadata is extracted from your repository. Whilst they do play a pivotal role in all backup routines, they are not as strong as the next backup type, and are prone to data loss. Data loss per se is normally a bad word; however since the last state that joined the union was 1959, backing up your state table with a logical backup solution makes a huge amount of sense.

2. Physical backups—make an image copy of your data/metadata, and offers the Lamborghini or Ferrari database backup solution. Recovery manager (rman) is the state-of-the-art tool provided by Oracle. There are anywhere from a handful to a plethora of other 3rd-party vendor solutions in the physical backup arena.
The companion presentation at COLLABORATE08 will delve into some material not covered in this paper. Let's get started by looking at the role played by logical backups.

Logical backups

Traditional export/import has been the mainstay of Oracle backups for over 20 years. They still play a role in close to all sites running anything earlier than 10g. Many DBAs supporting 10g still use traditional export since they have not been able to find/make the time to switch. Oracle Data Pump export/import is the tool of choice since 2003 when 10g was released. Moving forward, Oracle commits to keeping the traditional import product around but "threatens" to retire traditional export some day. Let's first look at a few scenarios where logical backups make so much sense.
Oh no! was that production where i dropped a table!!!!

Settle down, it has not happened … Meghan, the most senior DBA on staff, inadvertently dropped the PROVINCE code table. It's 2:30PM central, and the applications have already started to complain. No need to panic:

1. open a DOS window

2. set oracle_sid=prod

3. set data_pump_dir=full_database

4. impdp userid=exp/exp dumpfile=full_prd_20080411 logfile=get_province schemas=code_repo tables=province

If you and I had 3-5 hours, we could discuss how this could be done from a physical backup.

I'd really like a copy of those triggers in development!!

As odd as this requirement may seem, it happened to me at a client a few years ago. The developers ended up working in the wrong schema on the test box. When they noticed what had happened, I was asked to restore the production triggers for a schema in test, nothing else. Here we go:

1. export ORACLE_SID=prod

2. exp userid=exp/exp owner=probtrack rows=n grants=n indexes=n constraints=n statistics=none file=pt_triggers log=get_pt_triggers

3. get the export file to the test server

4. imp userid=exp/exp owner=probtrack file=pt_triggers log=pt_triggers ignore=y log=put_pt_triggers

Any existing triggers will be overwritten with a production copy, and new ones will be created from scratch.

can you replicate a schema's functions elsewhere?

This is somewhat similar to the trigger request. Using anything other than data pump export/import would be next to impossible. The interesting thing about data pump is you can bring out the definitions of only one type of stored object as follows:

1. set oracle_sid=prod
2. set data_pump_dir=full_database

3. expdp userid=exp/exp dumpfile=ap_functions logfile=get_ap_functions include=functions content=metadata_only

4. impdp userid=exp/exp dumpfile=ap_functions table_exists_action=replace logfile=put_ap_functions
So, you are just about to say … "these examples are so far fetched, I would never imagine being in a situation requiring a logical backup". Trust me; it will happen to you. If you do not make logical backups part of your disaster recovery, in a short time you will regret it.

Can you copy this database from UNIX to Windows?

Except for situations where an O/S change can be accomplished using rman (and at least 10g if not 11g), traditional export or data pump is the only method that can do the desired work. As far back as my experience goes with Oracle (late version 5), export/import has been capable of crossing the O/S boundary. I remember taking a database out of a Windows environment and copying to an Amdahl mainframe with the EBCDIC coding standard. The following steps using this logical backup will accomplish the desired result:
1. exp userid=exp/exp full=y file=full_prod logfile=get_full_prod
2. create a new database on the target server

3. run admin scripts to finish off the setup of the data dictionary

4. create the exp user and give it the imp_full_database role

5. pre-create the tablespaces on the Windows server

6. imp userid=exp/exp full=y ignore=y log=put_full_prod file=full_prod

7. imp userid=exp/exp full=y ignore=y rows=n log=put_full_prod2 file=full_prod

Notice the second full database import in step #7. On a full database import this step ensures that any object compilation errors that may have been encountered on the first import will not happen the second time through. Famous last words you say? I have actually done this rows=n ignore=y import a number of times to clean up all object compilation warnings before moving on and deeming the build to be successful and complete.
Physical backups

I will concentrate on some dilemmas/requirements that can be best solved using your/my favourite (and in my opinion only) physical backup solution … rman. The classic recovery scenario is being asked to replicate a database from one machine to another identical server. There is a duplicate database command native to rman, but I have been doing this replication manually.
Can you replicate this database to our new server for testing?

The physical backup offers the only solution when attempting such a task as follows:

1. get infrastructure material over to the new server (the likes of, but not limited to spfile or init file and tnsnames.ora)

2. get a copy of the most recent backup to the new server in the exact same location as where it was originally written

3. ensure SQL*Net access exists from the new server to the recovery catalog database

4. invoke rman and set the database ID

5. startup nomount the database

6. restore a copy of the control file

7. restore the database

8. recover the database

9. open the database

Your first comeback to this rebuild may be "but I can do that with a logical backup too". Yes you can but using the physical backup

· there is no need to pre-create the database on the target server

· the time-to-market is significantly lower—a 45 minute build using rman could take 4 to 5 hours using a logical backup

· your work will be much less prone to error

We need archived redo backed up and cleaned up hourly
A physical backup solution is the only way this can be accomplished. Rman offers archived redo log backup on its own and automatic cleanup using the delete input feature. The solution for this requirement would involve:

1. invoking rman and connecting to the recovery catalog

2. issuing the crosscheck archivelog all; command

3. issuing the command to backup available archived redo, deleting files once successfully backed up

One can argue that an O/S based backup followed by a scripted cleanup of archived redo is "just as good". The painstaking storage of rman backup set pieces includes archived redo backups. With archived redo in the rman area, extraction for recovery is possible using its recover database; command or manually with the restore archivelog from logseq= to logseq= construct.

Physical standby database build

As well, there is a duplicate database command in rman to build a standby; many techies still do it the old-fashioned way. The first seven steps are exactly the same as the "Can you replicate this database to our new server for testing?" a few paragraphs back. Steps 8-10 shown in the next list are the steps that turn the recovered database into a standby:

1. get a copy of the most recent backup to the new server in the exact same location as where it was originally written

2. ensure SQL*Net access exists from the new server to the recovery catalog database

3. invoke rman and set the database ID

4. startup nomount the database

5. restore a copy of the control file

6. restore the database

7. recover the database

8. shutdown the database

9. build and push over a standby control file to the standby site

10. open the standby

Enough said about the advantages/disadvantages of logical and physical backups. Suffice to say, as most readers will agree, they both play a pivotal role in one's disaster recovery planning. If you are using traditional online backups as your physical backup solution, ponder the future based on the "sales pitch" for rman in the next section.
Why move to rman, if not already there
It is most DBAs unequivocal recommendation to go directly to rman, do not pass go, and do not collect $200 for the following reasons:

1. More tightly entwined with the software since everything is done under the umbrella of an Oracle server connection.

2. Native compression—a dream come true. No more wrestling with gzip and sacrificing the CPU cycles to compress a backup set to conserve precious disk space. Compression alone is a compelling reason to go to rman in 10g and above as illustrated in Figure 1. The 250Gb database can easily be backed up and compressed with gzip, comfortable that two generations can be stored online at a time. When recovering, the input backupset pieces must be uncompressed to be read by rman. There is no way the rman backup area will be able to hold one uncompressed and one compressed backupset at the same time.
[image: image1.png]at

w2

o3

o4

Non-database files

rman backup area (2 generations cormpressed)

Files for other applications

250Gb database

Figure 1: Dilemma when using non-native compression
This dilemma is removed using the native compression with 10/11g. The rman-compressed backupset pieces can be read without any intervention.
3. Close to zero intrusion in the operations of the database as tablespaces need not be taken in and out of backup mode; the overhead implicit with a tablespace mode change (i.e., in and out of backup mode), however low, is avoided.

4. With further releases of Oracle, especially 10g and 11g, rman has begun to play a huge role in more than just backup. Significant throughput and functionality appears for rman every release such that adopters then can leverage new stuff at once since they are already rman users.

5. The incremental backups are attractive as one can simply backup what has changed.

Wrapup
As is discussed in the live presentation accompanying this paper, a well thought-out and thoroughly tested set of recovery procedures is what separates the "real DBAs" from the fakers. Work alongside your system administrator will ensure a smooth restore/recovery process if and when disaster strikes. This paper is a quick overview of what is out there. It is our responsibility to slice and dice all possible recovery scnenarios. Here's one, for example, you probably have never had to struggle with … what would you do if this happened to you? On your production UNIX machine, someone codes a data pump export file cleanup routine, part of it containing the following lines:

cd /u01/backup/rman/prod

find . –name * -mtime 4 –exec rm {} \;

The script has been humming along for weeks; then one day all of a sudden the /u01/backup/rman/prod directory is inaccessible. The oracle UNIX user is positioned in $ORACLE_HOME when logging in. The day that change directory command fails, the find command will wipe the contents of $ORACLE_HOME. How long would it take you to re-install the Oracle software, not to mention the pickle you would be in wrt. any databases running out of that location; all executables, including oracle and tnslsnr no longer exist.
about the author

Michael S. Abbey is a recognized authority on database administration, installation, development, application migration, performance tuning, and implementation. Working with Michael Corey and Ian Abramson, he has co-authored 16 books for McGraw-Hill's Oracle Press Series, including most recently Oracle Database 10g: A Beginner's Guide. Active in the international Oracle user community, Abbey is the director of events for and serves on the board of directors of the Independent Oracle Users Group (IOUG). He is a frequent speaker and keynoter at user group and vendor conferences and has appeared at such events as IOUG Live!, COLLABORATE, Oracle Open World, the European Oracle User Forum, and UK Oracle User Forum.

3

 Paper #358

