Development - Performance Tuning

Performance Tuning By Example:
Oracle’s RMS Is The Tutor

Roger G. Ruckert, Ruckert, Inc.
Overview
Performance tuning of application programs is a critical component of any production environment. From users expecting sub-second response times with online forms, to batch jobs running for several hours, the performance analyst always faces unique tuning challenges.
This paper will describe some tuning characteristics of Oracle’s Retail Merchandising System (RMS) batch jobs. Although this code set uses Pro*C, the concepts and solutions presented are applicable across other Oracle Retail applications as well (including RMS onlines using Forms; RPM and Allocations using Java; and DWI using RETL).
Steps For Performance Tuning
1. Understand The Executing Environment

Each product and tool that you will performance tune has both shared and distinct attributes. The single most important shared attribute is SQL. For a performance tuner, knowing the SQL language and how it executes in the Oracle database is the most important skill to acquire. SQL tuning and how the optimizer creates an execution plan are outside the scope of this paper, and there are a lot of good resources available which deal with these topics. One reason that knowledge of the SQL language is important is that a statement may need to be rewritten in order to use an optimal execution plan, so the tuner must know different ways to code a statement to achieve the same result. Another important attribute of SQL tuning is that this skill is transferable across different products. Whether the SQL is created in a Form, hard-coded in a Pro*C program, or dynamically created and executed by JDBC through a Java application, it is just a SQL statement when it executes in the database, and how it is tuned is identical regardless of where it originates.
In terms of the distinct attributes of an application, this paper will focus on RMS. This includes the restart/recovery facility and multithreading. It is important to understand and work with these native facilities rather than against them when performance tuning. For example, Forms handles row-level locking implicitly, so this functionality doesn’t need to be coded or tuned. On the other hand, JDBC doesn’t perform this locking natively, so it must be explicitly coded and tuned.

2. Understand The Program Flow
It is important to understand the high-level structure of the program flow. In the case of RMS batch jobs, this usually consists of 2 phases:
1. Driving cursor phase

2. Main processing phase
The driving cursor phase is where the candidate rows are selected for further processing. This is frequently a monolithic SQL statement that consumes most of the execution time. The logic is frequently complex in order to handle different business conditions (for example, you may want to select all items that are out of stock, but non-pack items must be handled differently than pack items).

In the main processing phase, the rows from the driving cursor are processed. This typically happens in batches of rows, retrieved into arrays. This is both to control the size of undo as well as to update the restart/recovery structures.

One reason for the importance of understanding the program flow is how the tuning of a performance problem will occur. Tuning a slowly executing driving cursor is much different than tuning the main processing phase. If the performance problem is in the main processing phase (for example, each candidate row from a driving cursor must be single-threaded through a PL/SQL routine due to business logic processing), a common way to improve throughput is to increase the number of threads of the program. If the performance problem is that the driving cursor is performing lots of physical I/O to generate its result set, increasing the number of threads will be counterproductive. This would call for a different solution; for example, creating a prepost-pre step which would populate the result set into a temporary table. Since prepost is single-threaded, this step could achieve greater overall process throughput by using parallel hints in this single statement and then multithreading the main processing phase, rather than multithreading the driving cursor phase.
There should be 2 performance tuning goals with respect RMS tuning efforts:
1. Make the individual program as efficient as possible. This is a “unit testing” goal and ensures that the SQL is tuned, good program structures and algorithms are being used, and native optimized features are being used (for example, Pro*C bsearch and PL/SQL bulk commands)

2. If multiple threads will run, make sure the individual threads are scalable. This goal aims to avoid database contention, such as locking and latching, and pushing the bottleneck to a resource that more of can be added (disks, CPU, memory, threads, etc.).
Note that speed does not equal scalability. For example, let’s assume that you wanted to perform a data load using SQL*Loader. Because of the severe restrictions on its parallel direct path loads, such as indexes not being maintained, it is not an option in your case. Using a single direct path load process is fast, but it reaches a throughput limit. Also, there can’t be more than one of these running against a particular table at a time, due to locking used to achieve its throughput. This is an example of a fast, but non-scalable, solution.

An alternative approach is to use conventional path loading. Each conventional path load thread is slower, but multiple concurrent processes can run. At some point, the total throughput of all of the concurrent processes can exceed that of direct path. This is an example of a scalable solution.

3. Perform Performance Triage

Once you have determined that a performance problem exists, it is time to isolate exactly where the problem is occurring. These include:

· Examining the $MMHOME/log directory for performance runtime information (this can be useful for gathering trend information, as well as gleaning additional information about any possible runtime errors)

· Examining the RESTART_PROGRAM_HISTORY table for trends and runtime information (this includes the performance columns that are populated with information about number of I/Os, SQL*Net traffic, and memory utilization that each thread has used)

Once a high-level examination has occurred, the most likely tool for further investigation is the native Oracle SQL*Trace facility. There are many ways to control when it is turned on and off, depending on the specific application platform. With RMS batch jobs, there is a native command line facility to enable tracing at different levels (that is, combinations of basic, wait, and/or bind variable).

4. Performance Tuning Of The Bottleneck

Once the bottlenecks have been identified, they should be tuned. As mentioned above, the tuning toolkit is different when the bottleneck is in the driving cursor as opposed to the main processing. When tuning the driving cursor, basic SQL tuning techniques apply. This includes understanding what the query is trying to do, diagramming it to enhance understanding of the execution plan, and determining why the optimizer chose that particular execution plan. If changes to the execution plan are needed, this would require rewriting the statement, changing the hints, or a combination of the two.
When tuning the main processing section, the most frequently used options are changing the number of threads and the size of the logical unit of work (commit_max_ctr). It is also possible that there are some contention issues that are preventing scalability (examples include block contention, block cloning, and insufficient INITRANS settings). Another issue might be thread skew, where one thread has a disproportionate amount of work to complete relative to the other threads. A final tuning consideration would be the cost of context switching (particularly from Pro*C to PL/SQL).

Naturally, a volume-sized before-and-after run should be performed to demonstrate that the performance has in fact improved. Ideally, this would consist of formatted tkprof files to document the improvement as well as the runtime SQL statement execution plans. The latter is useful should you need to revisit this program again in the future (for example, if the table sizes change and the optimizer chooses a different execution plan, you would have documentation of what the execution plan was at the earlier time).
RMS Native Features

1. Restart And Recovery Tables

The tables that RMS uses to control restart and recovery are shown below. When a thread starts, it checks RESTART_PROGRAM_STATUS to see if there is an available thread to run. Assuming there is, it gets assigned a thread, though not necessarily the lowest thread available. At the same time, a row is inserted into RESTART_BOOKMARK. The purpose of a bookmark is to exclude the reprocessing of data should a restart situation be required. During processing, the RESTART_BOOKMARK is updated as part of each array’s COMMIT, or logical unit of work. Since data is processed in order, a sort is usually part of the program’s driving cursor, and consists of the threading and/or bookmark keys.

[image: image1.emf]RESTART_

PROGRAM_

STATUS

RESTART_

BOOKMARK

RESTART_

PROGRAM_

HISTORY

RESTART_

CONTROL

One row per program

One row per thread

One row per

successfully

completed thread

One row per active or aborted thread

As an example of bookmark usage, the driving cursor for prepost-rplapprv-pre consists of the following statement:
SELECT (columns)

 FROM rplapprv_c_order

 WHERE thread_val = TO_NUMBER(:ps_processing_thread)

 AND order_no > NVL(:os_order_no, -9999)

 ORDER BY order_no

Notice the sort on the threading key. If the bookmark is updated at, say, order number 100, and the thread fails, the restarted thread will only process orders greater than 100.
Some programs, such as salprg, have implicit restart-recovery. They dynamically build their driving cursor data without regard to bookmarks (in the case of salprg, any data older than a certain amount). Should the program fail, the restarted program will continue deleting data from where it left off.

2. Multithreading Basics

Multithreading allows multiple copies of the same program to work on different subsets of the data. Not all programs are multithreadable, as there may be locking considerations. (This is similar to DDL and DML operations, where DDL is single threaded and DML is multithreaded.) If a program is multithreadable, the input data needs to be segmented so that the different threads can avoid locking and contending with each other. The threading column (or columns) is typically a business attribute, such as department, supplier, or item.
In some cases, the threading column isn’t so obvious. For example, program rplapprv (replenishment order approval) wasn’t threaded, but we needed it to be in order to meet our batch window target. The obvious threading column was order, but when testing this, locks occurred with open-to-buy logic. This wasn’t immediately obvious, since this logic was buried in PL/SQL program calls. Analysis revealed that the most granular logic is by department, so this is the correct threading column.

A key consideration is that the same rows should be assigned to the same thread should a restart be required. If the threading column rows of a driving cursor do not change, you can use a dynamic view in the cursor, as the same rows will be assigned to the same threads if restarted. For example, suppose a driving cursor selects items on order with status ‘A’ and it is threaded on supplier (say, by joining to the view V_RESTART_SUPPLIER). The program modifies these items to status ‘B’. If thread 1 fails and is restarted, it will pick up the same items and its restart bookmark will be correct.

If the threading column rows of a driving cursor might change, you need a static table to ensure the same rows are retrieved by the same thread if that thread is restarted. This is usually accomplished by a table that is populated by the prepost program, where the table contains a thread number as a column in the table. For example, suppose a driving cursor selects items with status ‘A’ and it is threaded on item. The program modifies these to status ‘B’. If thread 1 fails and is restarted, it might pick up thread 2’s items and the restart bookmarks will be inconsistent (that is, the bookmark for thread 1 might point to data that would be picked up by thread 2 instead).
The prepost program is very useful in performing setup operations before or after multiple threads of another program are run. It has no restart entry, and only runs 1 thread of a function, so it can perform DDL or DDL-type functions (such as truncating a table or populating a table). In the example above, prepost could populate a table with restart-recovery data and assign the thread number to each candidate row. This functionality couldn’t be assigned by the program itself, since there would be no way to guarantee one thread would have its function completed before another thread began processing. The typical program flow for each job step is: one thread of prepost-pre (optional); multiple threads of the program; and one thread of prepost-post (optional).

3. Relevance

Why all of this attention to restart-recovery and multithreading? As you design performance workarounds, you need to understand and use the native RMS restart/recovery facility and multithreading correctly!

Performance Triage

How do you know there’s a performance problem with a batch job?

· Computer operations or end users (“things ran long”)

· 3rd party tools (OEM, Precise, BMC, others)

· Job scheduler

· Log files in $MMHOME/log

· RESTART_PROGRAM_HISTORY (a.k.a. RPH; my personal favorite)
The last two are specific to RMS, so they will be examined in some more detail.

1. Log Files

The log files in $MMHOME/log can provide valuable information about run statistics. There is one log file created per day for all jobs. The file entries tell when each thread started and finished. You can determine trends when comparing programs over time. This file is the only way to tell if command-line options were used in the thread execution. One limitation with using these files is that the thread number only displays when thread finishes, so tying threads out is occasionally difficult. In the following output from an actual log file, it is impossible to tell which thread was actually traced:
Tue Nov 13 01:26:26 Program: reqext: PID=8425566: Started by rmschd

Tue Nov 13 01:26:27 Program: reqext: PID=8208430: Started by rmschd, SQL_TRACE=8

Tue Nov 13 01:32:12 Program: reqext: PID=7962624: Thread 1 - Terminated Successfully

Tue Nov 13 01:32:32 Program: reqext: PID=7848078: Thread 2 - Terminated Successfully
2. Restart Program History (RPH)

My favorite tool for performance triage is the table RESTART_PROGRAM_HISTORY. It creates one row for each thread that successfully completes, and this row is inserted just before the program finishes. Since it is a database table, we all (should) know how to write queries against it (SQL*Plus, TOAD, OEM, etc.). One callout is to not let your DBAs purge it randomly, as its historical data is valuable for trend information.

Part of the power of this table is its pre-insert trigger that provides additional performance data that isn’t available without using 3rd party tools. The RESTART_PROG_HST_TRG trigger populates data for the following:

· Logical block reads (LREAD = TKPROF query + current)

· Physical block reads (PREAD = TKPROF disk)

· Logical block writes (LWRITE)

· Maximum user memory (UGA_MAX)

· Maximum process memory (PGA_MAX)

· SQLNET_BYTES_FROM_CLIENT

· SQLNET_BYTES_TO_CLIENT

· SQLNET_ROUNDTRIPS
Here are some examples of using this data for analysis.

A. Trend Analysis

 Num Thd Run Time Max PGA Max UGA

Program Name Thds No Start Time HH:MI:SS Logical Reads Phys. Reads Logical Writes Mbytes Mbytes

------------ ---- --- ---------------------- -------- ------------- ------------ -------------- ------- -------

miscpoclose 1 1 Tue 01-Jan-08 22:02:52 0:21:33 8,756,100 2,997 4,916 16.5 11.7

miscpoclose 1 1 Wed 02-Jan-08 22:02:54 0:21:37 8,198,500 2,900 97 16.6 11.9

miscpoclose 1 1 Thu 03-Jan-08 22:02:56 0:21:06 8,118,983 2,545 19 16.8 12.0
miscpoclose 1 1 Fri 04-Jan-08 22:02:56 0:21:38 8,550,703 2,994 334 16.9 12.2
miscpoclose 1 1 Sat 05-Jan-08 22:02:53 0:21:04 8,427,394 2,904 90 16.9 12.2
miscpoclose 1 1 Sun 06-Jan-08 22:02:56 0:20:35 8,364,985 2,652 23 16.9 12.2

miscpoclose 1 1 Mon 07-Jan-08 22:02:57 0:21:59 8,498,031 2,946 227 17.2 12.4

miscpoclose 1 1 Tue 08-Jan-08 22:02:54 0:22:04 8,019,365 3,161 958 17.3 12.6

miscpoclose 1 1 Wed 09-Jan-08 22:02:57 0:21:44 7,926,174 2,932 186 17.4 12.7

miscpoclose 1 1 Thu 10-Jan-08 22:03:02 0:22:34 7,914,794 2,690 19 17.6 12.8

miscpoclose 1 1 Fri 11-Jan-08 22:02:59 0:22:25 7,900,846 2,968 134 17.8 13.0

miscpoclose 1 1 Sat 12-Jan-08 22:02:56 0:22:30 7,857,193 3,012 268 17.7 13.0

miscpoclose 1 1 Sun 13-Jan-08 22:02:55 0:23:39 7,689,269 3,134 126 17.8 13.0

miscpoclose 1 1 Mon 14-Jan-08 22:03:04 0:23:25 8,073,240 2,700 19 18.1 13.3

miscpoclose 1 1 Tue 15-Jan-08 22:02:58 0:24:07 8,076,995 2,912 20 18.2 13.5

miscpoclose 1 1 Wed 16-Jan-08 22:03:16 0:24:29 8,100,318 2,949 50 18.5 13.7

miscpoclose 1 1 Thu 17-Jan-08 22:02:57 0:24:56 8,116,051 3,440 463 18.6 13.9
miscpoclose 1 1 Fri 18-Jan-08 22:03:00 0:26:42 8,197,364 3,592 1,097 18.8 14.0
miscpoclose 1 1 Sat 19-Jan-08 22:02:56 0:26:37 8,064,246 3,340 377 18.9 14.0

miscpoclose 1 1 Sun 20-Jan-08 22:02:55 0:25:41 7,847,664 2,973 20 18.8 14.0
Notice how the runtimes have been pretty consistently increasing, from 21.5 minutes to 25.7 minutes. Although the amount of database work has been steady or decreasing (in terms of reads and writes), the memory footprint has been steadily increasing (both PGA and UGA). This would suggest a memory leak, and this should be the first area for tuning focus.

B. Thread Skew

 Num Thd Run Time Max PGA Max UGA

Program Name Thds No Start Time HH:MI:SS Logical Reads Phys. Reads Logical Writes Mbytes Mbytes

------------ ---- --- ---------------------- -------- ------------- ------------ -------------- ------- -------

likestore 15 2 Fri 18-Jan-08 22:05:32 1:00:21 21,310,244 212,342 2,341,819 8.9 3.9

 15 3 Fri 18-Jan-08 22:05:32 8:00:14 94,534,807 2,381,378 24,894,594 27.2 19.0

 15 4 Fri 18-Jan-08 22:05:32 6:45:45 57,004,337 1,842,607 21,861,191 21.9 15.7

 15 5 Fri 18-Jan-08 22:05:32 23:04:46 165,873,246 7,763,738 67,293,999 58.9 49.8

 15 6 Fri 18-Jan-08 22:05:32 13:29:31 162,841,412 4,546,129 46,660,590 41.6 32.9

 15 7 Fri 18-Jan-08 22:05:32 1:56:05 32,610,897 454,068 6,597,719 13.4 7.0

 15 8 Fri 18-Jan-08 22:05:32 15:46:14 177,975,663 5,312,498 54,951,595 49.4 40.7

 15 9 Fri 18-Jan-08 22:05:32 1:13:01 16,811,115 262,774 3,767,178 11.3 4.9

 15 11 Fri 18-Jan-08 22:05:32 23:15:46 169,661,982 7,702,884 66,574,840 59.2 50.0

 15 12 Fri 18-Jan-08 22:05:32 4:19:27 48,452,731 1,205,413 14,978,136 19.5 12.2

 15 13 Fri 18-Jan-08 22:05:32 17:30:16 126,088,643 5,802,911 48,409,123 47.6 39.7

 15 14 Fri 18-Jan-08 22:05:32 6:44:48 48,912,303 1,836,977 21,298,605 21.1 15.6

 15 15 Fri 18-Jan-08 22:05:32 1:09:18 16,789,653 248,680 3,245,961 10.9 4.9

*********** ------------- ------------ -------------- ------- -------

avg 30.1 22.8

sum 1,138,867,033 39,572,399 382,875,350

First off, notice that threads 1 and 10 aren’t listed above. This would indicate that they aborted, since rows are only inserted into RESTART_PROGRAM_HISTORY for threads that complete successfully. Next, note the wide range of runtimes by thread (from 1 hour for thread 2 to over 23 hours for thread 11). Part of the rationale for using multithreading is that the work is relatively evenly divided among the threads. This spreading out of the work helps reduce the overall throughput of the job set. The first steps here would be (1) determine why threads 1 and 10 failed (likely from “snapshot too old” or a similar error) and (2) determining how to evenly spread the work across all threads. This would likely involve a prepost-likestore-pre step to populate a driving table, as described in “Multithreading Basics” above.
C. Bursty Data

 Num Thd Run Time Max PGA Max UGA

Program Name Thds No Start Time HH:MI:SS Logical Reads Phys. Reads Logical Writes Mbytes Mbytes

------------ ---- --- ---------------------- -------- ------------- ------------ -------------- ------- -------

prepost 1 1 Tue 01-Jan-08 09:17:53 3:03:23 14,266,346 2,089,923 6,070,279 101.9 .8

 costcalc 1 1 Tue 01-Jan-08 22:47:21 0:19:33 700,814 112,895 351,468 12.3 1.3

 post 1 1 Fri 04-Jan-08 00:29:56 1:42:34 8,152,298 766,720 3,170,110 101.9 2.3

 1 1 Sun 06-Jan-08 01:52:18 2:03:37 7,569,633 925,763 3,587,321 87.8 .9

 1 1 Mon 07-Jan-08 01:35:47 2:01:20 6,652,368 1,285,058 3,068,467 65.9 1.0

 1 1 Wed 09-Jan-08 05:21:10 2:44:49 15,374,573 1,098,064 4,721,126 101.9 6.3

 1 1 Thu 10-Jan-08 21:53:55 2:56:17 12,257,516 1,237,843 5,187,197 101.9 .9

 1 1 Fri 11-Jan-08 11:16:53 1:39:08 8,247,064 635,461 2,732,626 101.9 2.5

 1 1 Sat 12-Jan-08 00:06:05 1:05:12 6,977,040 443,177 2,135,735 101.9 1.6

 1 1 Sun 13-Jan-08 00:16:57 16:06:20 462,862,464 5,464,480 17,372,420 107.5 1.1

 1 1 Sun 13-Jan-08 23:57:30 1:50:04 5,963,398 914,789 2,901,142 59.0 1.5

 1 1 Wed 16-Jan-08 03:19:25 6:01:44 28,484,641 2,457,623 11,719,687 101.9 1.8

 1 1 Thu 17-Jan-08 02:34:54 6:16:26 205,627,578 2,080,089 7,635,428 101.9 1.1
 1 1 Fri 18-Jan-08 00:11:29 1:45:43 8,665,439 1,639,789 3,381,091 101.9 1.2

 1 1 Sat 19-Jan-08 00:37:45 1:58:14 8,626,233 1,550,050 2,998,347 101.9 .8

 1 1 Sat 19-Jan-08 22:50:10 1:18:12 4,445,912 1,400,252 2,007,067 29.3 2.5

 1 1 Sun 20-Jan-08 22:32:32 2:27:35 240,284,368 5,370,224 417,784 7.8 1.1

 1 1 Mon 21-Jan-08 22:31:25 0:01:49 128,035 8,994 41,483 3.8 2.3
In the case of prepost-costcalc-post, the runtimes vary dramatically. In the report above, it went from under 2 minutes to over 16 hours. In some cases in RMS, the correct solution is cooperation with the business users. For example, most of the pricing jobs are threaded by price change number. That means that, as far as threading is concerned, a price change with 1 item on it is treated the same as a price change with a million items on it. Naturally, the amount of processing is proportional to the number of items on a price change. In cases like this, the users may have control over their price changes to help processing times (for example, they could submit 10 price changes each with 100,000 items, rather than 1 price change with 1,000,000 items).

The first things to look at in the above scenario are (1) can this program be multithreaded and (2) if not, can the users be sure their cost changes get processed on the weekend when the impact to the production schedule is likely to be less that during the week.
3. SQL*Trace And Tkprof
Once a performance problem has been detected, you need to isolate and identify it. The most frequent diagnostic tool to do this is SQL*Trace coupled with tkprof. The explanation and interpretation of trace file contents can be found in several places, including the Oracle documentation set for your particular platform. Once the trace files have been created, use tkprof to format them for analysis. Beware of Bug 5470034: “ORA-1436 from TKPROF EXPLAIN of query using a WITH clause” if you are using versions of Oracle below 11 and any SELECT statements that use subquery factoring (the WITH syntax).

RMS Pro*C batch jobs link to 2 static Pro*C libraries: oracle.pc and retek_2.pc. These libraries provide a convenient facility to execute selected ALTER SESSION statements when the database connection is established. The options are specified on the command line; must be in upper case; must not contain spaces between the key word, equals sign, and parameter; and may appear in any order. The most important ones are:

· SQL_TRACE
· DB_FILE_MULTIBLOCK_READ_COUNT

· HASH_AREA_SIZE

· SORT_AREA_SIZE

The SQL_TRACE number that gets passed corresponds to event 10046:
0: no tracing

1: basic tracing

4: basic + bind variables

8: basic + wait events

12: basic + bind variables + wait events

The one most often used for diagnostic tracing is 8.
The DB_FILE_MULTIBLOCK_READ_COUNT parameter controls the multiblock read performance used for full table scans and index fast full scans. One would likely increase this if most waits were on “db file scattered read”, mostly in the driving cursor. For example, assume your process is performing a lot of full table scans and your process’s DB_FILE_MULTIBLOCK_READ_COUNT is set to 8. In many Unix environments, 1 MB is the optimal transfer block size for multiblock I/O. To calculate the optimal value, set it to (1 MB / DB_BLOCK_SIZE). If the database has an 8 KB block size, set DB_FILE_MULTIBLOCK_READ_COUNT to 128. A word of warning: changing this value may impact all execution plans for that process. Be sure to fully test this change before implementing it in production.

The HASH_AREA_SIZE and SORT_AREA_SIZE parameters are specified in millions, not K. For instance, HASH_AREA_SIZE=100 means 100,000,000. Note that these values are only relevant if the database is not using PGA_AGGREGATE_TARGET.

As an example for how to use these parameters, a run of

salapnd <user/password>

could become

salapnd <user/password> SQL_TRACE=8 DB_FILE_MULTIBLOCK_READ_COUNT=128

if you wanted to generate a level 8 trace and modify the multiblock I/O characteristics.

My Tuning Philosophy

Anything worth doing, is worth doing faster!

� EMBED Visio.Drawing.11 ���

©2008 Ruckert, Inc.
8

Paper #448

[image: image2.emf]RESTART_

PROGRAM_

STATUS

RESTART_

BOOKMARK

RESTART_

PROGRAM_

HISTORY

RESTART_

CONTROL

One row per program

One row per thread

One row per

successfully

completed thread

One row per active or aborted thread

_1267532370.vsd
Data

RESTART_ PROGRAM_ STATUS

RESTART_ BOOKMARK

RESTART_ PROGRAM_ HISTORY

RESTART_ CONTROL

One row per program

One row per thread

One row per successfully completed thread

One row per active or aborted thread

