Database

Enhanced Partitioning in oracle Database 11g
Kent Hinckley, Systems Plus

A Brief History of Partitioning
	Version
	Functionality
	Maintenance

	Oracle8
	Range partitioning
	Add, drop, truncate, exchange,

move

	Oracle8i
	Hash partitioning
Range-hash partitioning
	Split, merge

	Oracle9i
	List partitioning
Range-list partitioning
	

	Oracle
Database 10g
	Global hash indexes
1 million partitions per table
	

	Oracle
Database 11g
	Interval, virtual column-based, reference, system partitioning
Additional composite options
	Partitioning Advisor

The above chart shows a brief history of Oracle partitioning. Oracle introduced partitioning in Oracle8. Our only option at that time was range partitioning which works extremely well for historical based tables. For example, we could partition the sales table based on years or months based on specific application requirements. At that time, we also had a wide range of partition maintenance commands. It made it very painless to build a historical table that would move through time by adding and dropping partitions as required.

The major change as we moved to Oracle8i was the addition of hash partitioning. It was often desirous to take advantage of the performance capabilities of partitioning but there was not a column or set of columns that would provide a good partitioning structure. Enter hash partitioning which allowed us to specify the number of partitions, a column to be used as the hash key, and Oracle would attempt to evenly spread the rows across the specified number of partitions. Also in Oracle8i, we had the ability to split and merge partitions..

Oracle9i added list partitions. We could now partition the table based on an explicit list of values. As an example, it was an application requirement to partition the table based on sales regions. The Northwest region consists of the states of Washington, Oregon, Idaho, Wyoming, and Montana. The Southwest region might be the states California, Nevada, New Mexico, and so on. It is relatively easy to modify the values within the individual partitions as required. With Oracle8i and Oracle9i, we also had the ability for basic composite partitions, range-hash in 8i and range-list in 9i.
With each release of Oracle, partitioning continues to be enhanced. In Oracle Database 10g, the maximum number of partitions per table increased from 64,000 to 1 million. But the major changes since partitioning was introduced have come in Oracle Database 11g. Many additional partitioning options have now come into play. This paper will concentrate on the 11g enhancements.
11g Enhancements
Oracle Database 11g has added a wide array of additional partitioning options including:

Interval partitioning

Reference partitioning

Virtual column partitioning

System partitioning

A wide variety of additional composite partitioning options

Interval Partitioning
Interval partitioning is, in essence, an extension of range partitioning. In previous versions, range partitioning required constant maintenance to add new partitions to our existing tables. Interval partitioning automates the creation of new range partitions based on a specified interval. The new partitions are added on demand as rows are inserted into the table. The INTERVAL keyword is specified in the create table command or an existing partitioned table can be altered to be an interval-partitioned table.
When creating a new interval partitioned table, at least one partition must be specified. For example, may want to partition the sales table to create a new monthly_sales table partitioned by month and take advantage of interval partitioning:

 CREATE TABLE monthly_sales (

 prod_id, cust_id, sales_date)

 PARTITION BY RANGE (sales_date)

 INTERVAL (NUMTOYMINTERVAL (1, 'MONTH'))

 STORE IN (tbs1, tbs2, tbs3, tbs4, tbs5)

 (PARTITION p_bef_jan2008 VALUES LESS THAN

(TO_DATE ('2008-01-01', 'yyyy-mm-dd')),

 PARTITION p_jan2008 VALUES LESS THAN

(TO_DATE ('2008-02-01', 'yyyy-mm-dd')))

 AS SELECT prod_id, cust_id, time_id

 FROM sales;
Remember, at least one partition must be specified when creating the table. In this case, we initially built the table with two partitions. Having built the table, we can now use the data dictionary to view the partitions defined for table:

SELECT partition_position pos, partition_name,

high_value

FROM
user_tab_partitions

WHERE table_name = ‘MONTHLY_SALES'

ORDER BY pos;
POS
PARTITION_NAME
HIGH_VALUE

1
P_BEF_JAN2008
TO_DATE ('2008-01-01')
2
P_JAN2008
TO_DATE ('2008-02-01')
 * The output for the HIGH_VALUE column has been abbreviated.
Now let’s insert a new row into the table that is several months in the future:

INSERT INTO monthly_sales

VALUES (12, 1948, '12-NOV-2008');
Re-execute the query on user_tab_partitions:
POS
PARTITION_NAME
HIGH_VALUE

1
P_BEF_JAN2008
TO_DATE ('2008-01-01')
2
P_JAN2008
TO_DATE ('2008-02-01')

3
SYS_P41
TO_DATE ('2008-12-01')
A new partition is automatically created with a system-generated name. Note that the intermediate partitions are not created.

Finally, what happens when a new partition is created that has a value lower than the existing high partition:

 INSERT INTO monthly_sales

 VALUES (12, 1948, '16-FEB-2008');

Re-execute the query on user_tab_partitions
POS
PARTITION_NAME
HIGH_VALUE

1
P_BEF_JAN2008
TO_DATE ('2008-01-01')
2
P_JAN2008
TO_DATE ('2008-02-01')

3
SYS_P42
TO_DATE ('2008-03-01')

4
SYS_P41
TO_DATE ('2008-12-01')

A new partition was created with a system-generated name by splitting partition SYS_P41. Note that the interval of one month is maintained.
With interval partitioning, by default, the first partition will be created in the user’s default tablespace. Subsequent partitions will be created in the database’s default tablespace. This default behavior may be changed by specifying the STORE IN clause:

STORE IN (tbs1, tbs2, tbs3, tbs4, tbs5)

The new partitions are created in the specified tablespaces on a round robin basis. The partitions could be moved later into other tablespaces as required. The system-generated name may also be changed:
ALTER TABLE monthly_sales

RENAME PARTITION sys_p41 to p_dec2008;

An existing partitioned table can be altered to be an interval-partitioned table

ALTER TABLE customers

SET INTERVAL (NUMTOYMINTERVAL (1, 'MONTH'));

When using interval partitioning, keep in mind the following restrictions:

· You can only specify one partitioning key column, and it must be of NUMBER or DATE type.

· Interval partitioning is not supported for index-organized tables.
Reference Partitioning

A common requirement is to partition a child table based on the partitioning scheme of the parent table. The orders and lineitems tables are equipartitioned on the order_date:

[image: image1.png]
Prior to Oracle Database 11g, it was necessary to define redundant data, order_date, in both tables. Now, with reference partitioning, it is possible to partition the child table based on the parent table without carrying the redundant data.
[image: image2.png]
An example of creating referenced partitioned tables:

CREATE TABLE orders

(order_id NUMBER(12) NOT NULL,

 order_date DATE,

... Remainder of table definition

PARTITION BY RANGE (order_date)

... Remainder of partition definition

CREATE TABLE lineitems

(order_id
 NUMBER(12) NOT NULL,

 product_id NUMBER(12) NOT NULL,

 quantity
 NUMBER(9) NOT NULL,

... Other columns as required – Note, order_date is not required

CONSTRAINT order_order_items_fk

FOREIGN KEY (order_id) REFERENCES orders(order_id))

PARTITION BY REFERENCE (order_order_items_fk);
Just a few of the key benefits of reference partitioning:

· All basic partitioning strategies (i.e., list) are available for reference partitioning.
· Allows partitioning on a column without requiring the redundancy of carrying that column in the child table.
· Simplified partition maintenance.
· Partition operations (split, drop, add, etc.) on the parent table cascade to the child table.
· If a partition in the parent table is split, the corresponding partition on the child table will also be split.
· It is not possible to directly add, drop, etc., partitions in the child table.
Reference partitioning is not supported for interval partitioning. It is possible to modify existing partitioned tables to be reference partitioned with an ALTER command. The foreign key constraint of a reference partitioned table cannot be disabled since it is the key reference point between the tables. Partition names in
the child table are inherited from the parent table. As an example, p_feb2008 in parent table becomes p_feb2008 in the child table. As with interval partitioning, may be renamed:
ALTER TABLE order_items
RENAME PARTITION p_feb2008 to p_details_feb2008;

Virtual Column Partitioning

Oracle Database 11g provides the ability to define a virtual column. Values for virtual columns are derived by defining an expression or function using one or more existing columns of a table. The expression may be as complex as required for your application. The virtual column is stored as metadata only. That is, a virtual column is not actually stored in the table, but is evaluated every time it is accessed. The column is specified when the table is created or can be added at any time with an ALTER TABLE command. Virtual columns can be used in queries, DML, DDL statements. They can be indexed and can have statistics collected on them.
There are some restrictions with virtual columns. You cannot write to a virtual column with an INSERT or UPDATE command. A virtual column cannot reference another virtual column. All columns referenced in the expression for the virtual column must exist in the same table. Finally, the output of the column expression must be a scalar value.
The key for our discussion is that tables and indexes can be partitioned on a virtual column. Be careful with one issue. The database will automatically migrate a row to a different partition if the virtual column evaluates to a different value in another partition. This could potentially be a performance issue if the virtual column values are frequently modified.
An example of creating a virtual column partitioned table:

CREATE TABLE employees

employee_id
NUMBER(6) NOT NULL,

last_name

VARCHAR2(30)NOT NULL,

... Other columns as required

sal

NUMBER(8,2),

comm.

NUMBER(8,2),

total_comp as (NVL(sal, 0) + NVL(comm, 0)))

PARTITION BY RANGE (total_comp)

 (PARTITION p_lt_50000 VALUES LESS THAN (50000),

 PARTITION p_lt_75000 VALUES LESS THAN (75000),

 PARTITION p_all_else VALUES LESS THAN (MAXVALUE));

System Partitioning
System partitioning enables application-controlled partitioning. With system partitioning, the database does not control the data placement into a partition. The database simply provides the ability to break down a table into partitions without knowing what the individual partitions are going to be used for. All aspects of partitioning must be controlled by the application. For example, an insert into a system partitioned table without the explicit partition specification will fail. The objective of system partitioning is to provide the benefits of partitioning, with the partitioning and actual data placement being controlled by the application.
To create a system partitioned table, define a specific number of partitions but do not define a specific partition key. The resulting partitions will not have a defined partitioning method. As rows are inserted into the table, they must be mapped to the specific partition through the use of partition-extended syntax. Most partition operations are supported including partition maintenance operations and other DDL operations, creation of indexes (local, local-bitmapped, and global), all DML operations, and INSERT AS SELECT, CREATE TABLE AS SELECT commands but only if they include a partition specification.
An example of creating a system partitioned table:

CREATE TABLE system_part_table

 (c1
NUMBER,

 c2
NUMBER)

PARTITION BY SYSTEM

 (PARTITION p1 TABLESPACE tbs_1,

 PARTITION p2 TABLESPACE tbs_2,

 PARTITION p3 TABLESPACE tbs_3,

 PARTITION p4 TABLESPACE tbs_4);
When inserting into the table, you must specify the partition to insert the row into or the insert will fail

INSERT INTO system_part_table PARTITION (p1)

VALUES (1290, 1846);
Deletes and updates do not require the partition-extended syntax. However, there is no partition pruning if the partition-extended syntax is omitted. Without the partition-extended syntax, the entire table is scanned to execute the command. For example, this update would cause all partitions to be searched for the row even though the row actually resides in partition p2:

 UPDATE system_part_table

 SET c2 = 4678

 WHERE c1 = 1946;
To avoid this problem

 UPDATE system_part_table PARTITION (p2)

 SET c2 = 4678

 WHERE c1 = 1946;
Composite Partitioning
Composite partitioning was first introduced in Oracle8i. A composite partition is a partition further broken up into subpartitions. In Oracle8i, it was possible to subpartition range partitioned tables using hash partitioning. Oracle9i expanded composite partitioning to include range-list partitioning. Composite partitioning supports all historical operations such as adding new range partitions. It also provides a higher degrees of potential partition pruning and finer granularity of data placement.

Oracle Database 11g adds a wealth of new composite partitioning possibilities:

· Range partitioning as the top-level partitioning method

· Range-Range

· List partitioning as the top-level partitioning method

· List-List

· List-Hash

· List-Range

· Interval partitioning as the top-level partitioning method

· Interval-Range

· Interval-List

· Interval-Hash
Following is an example of using range-range composite partitioning:
CREATE TABLE sales_range_range

 prod_id

NUMBER(6)
NOT NULL,

 cust_id

NUMBER(6)
NOT NULL,

 time_stamp
DATE

NOT NULL,

 ...)

PARTITION BY RANGE (time_stamp)

SUBPARTITION BY RANGE (cust_id)

 (PARTITION p1 VALUES LESS THAN ('01-JAN-2007'),

(SUBPARTITION sp1 VALUES LESS THAN (10000),

 ...)

 (PARTITION p2 VALUES LESS THAN ('01-JAN-2007'),

(SUBPARTITION sp1 VALUES LESS THAN (20000),

 ...)

);

Usage Recommendations
When to Use Interval Partitioning:

Interval partitioning can be used for any table that is range partitioned and uses fixed intervals for the new partitions. However, should not consider using when you create range partitions with different intervals or when you set specific partition attributes when you create range partitions. Keep in mind that you cannot manually add partitions to an interval-partitioned table. Also, you cannot use interval partitioning with reference partitioned tables.
When to Use Reference Partitioning:
When you have denormalized, or will denormalize, a column from a master table into a child table in order to get the partition pruning benefits on both tables. This would avoid having to duplicate the common column. When two large tables are joined frequently and the tables are not partitioned on the join key, reference partitioning implicitly enables full partition-wise joins. Reference partitioning would also be appropriate when data in multiple tables has a related life cycle. In order to use reference partitioning, you must enforce the foreign key relationship. A very nice feature of reference partitioning is that partition management operations against the master table are automatically cascaded to its descendent. As an example, splitting a partition in the parent table would also split equivalent partition in the child table.
When to Use Virtual Column Partitioning:

Consider using virtual columns if tables are frequently accessed using a predicate that is not directly captured in a column, but can be derived. However, PL/SQL function calls are not supported in virtual column definitions that are to be used as a partitioning key. Virtual column partitioning does support all partitioning methods. That is, any partition method using a regular column can use a virtual column. Remember, the virtual column does not require any storage which could also be an advantage.
When to Use Composite Partitioning:
Composite partitioning offers the benefits of partitioning on two dimensions. From a performance perspective you can take advantage of partition pruning on one or two dimensions depending on the SQL statement and also take advantage of the use of full or partial partition-wise joins on either dimension. Composite partitioning also increases the number of partitions significantly which may be beneficial for efficient parallel execution. You can split backups of your tables and store data differently based on identification by a partitioning key. Subpartitions may have properties that differ from the properties of the table or from the partition.

· Range-hash partitioning is particularly common for tables that store history and are very large as a result.

· Range-list partitioning is commonly used for large tables that store historical data and are commonly accessed on more than one dimension. Also, commonly used when there are discrete list values within a range partition. However, this could also implemented using interval-list partitioning, whereas list-range partitioning does not support interval partitioning.
· Range-range partitioning is useful for applications that store time-dependent data on more than one time dimension. The columns used in the partition and subpartition definition do not have to be the same datatype.
· List-hash partitioning is useful for large tables that are usually accessed on one dimension, but (due to their size) still need to take advantage of parallel full or partial partition-wise joins on another dimension in joins with other large tables.
· List-list partitioning is useful for large tables that are often accessed on different dimensions. This makes it possible to pecifically map rows to partitions on those dimensions based on discrete values.
· List-range partitioning is useful for large tables that are accessed on different dimensions. For the most commonly used dimension, specifically map rows to partitions on discrete values.
· List-range partitioning is commonly used for tables that use range values within a list partition. List-range partitioning is less commonly used to store historical data.
Single Partition Export

In past releases, the Data Pump Transportable Tablespaces mechanism could be used to specify only the physical tablespaces to be exported. Oracle Database 11g adds a partition mode which can be used to export one or more partitions or subpartitions of a table. This is a major advantage since you no longer need to move the entire table or exchange out the partition or subpartition. In addition, partitions can be imported to the target database either as part of an existing table or as a separate table for each partition. This new feature is implemented with the PARTITION_OPTIONS parameter.
As an example,
First, export the single partition:
EXPDP user1/user1 dumpfile=table_partition.dmp

directory=data_pump_dir tables=user1.monthly_sales.p_bef_2008

reuse_dumpfiles=y -- another new feature of 11g
Now, import the partition, maybe into a different database (could be used in conjunction with transportable tablespace):
IMPDP prod1/prod1 dumpfile=table_partition.dmp

directory=data_pump_dir partition_options=merge

The key to this feature is the PARTITIONS_OPTION parameter.
PARTITION_OPTIONS = {NONE | DEPARTITION | MERGE}

NONE creates the table as it existed on the system from which the export operation was performed. You cannot use the NONE option or the MERGE option if the export was performed with the transportable method, along with a partition or subpartition filter. In this case, you must use the DEPARTITION option.
DEPARTITION creates individual tables from each individual partition. The default name of the new table will be the concatenation of the table and partition name or the table and subpartition name, as appropriate.
MERGE combines all partitions and subpartitions into one nonpartitioned table.
There are a few restrictions that you need to be aware of. If the export operation that created the dump file was performed with the transportable method and if a partition or subpartition was specified, then the import operation must use the DEPATITION option. If the export operation that created the dump file was performed with the transportable method, then the import operation cannot use PARTITION_OPTIONS = MERGE. If there are any grants on objects being departitioned, an error message is generated and the objects are not loaded.
SQL ACCESS ADVISOR

Oracle Database 11g has improved the SQL Access Advisor to provide advice on partitioning tables. As before, it analyzes tables and queries based on a specified workload to identify possible partitioning strategies. This new feature includes considerations regarding the cost of creation and maintaining the access structures. Possible partitioning recommendations include:

· Add a new partitioned index

· Add a new partitioned materialized view

· Partition an existing non-partitioned table or index

· Repartition existing partitioned tables or existing dependent indexes

SQL Access Advisor provides the actual script to be used to generate the partitioned table. The Recommendation Types option in SQL Access Advisor previously included indexes and materialized views. Partitioning has now been added.
In summary, partitioning is a very effective tuning tool but the choice of partition type is not easily determined. SQL Access Advisor offers a much needed helping hand in these processes.
References

 For more information, reference:

Oracle Manuals:

 - VLDB and Partitioning Guide

 - SQL Language Reference

Other Sources:

 - Oracle University, Oracle Database 11g : New Features for Administrators

 - Oracle Database 11g: The Top Features for DBAs and Developers, Partitioning to Perfection

Arup Nanda, Oracle Technology Network

 - Oracle Database 11g New Features

Robert G. Freeman

 - Oracle Database 11g DBA Handbook

Bob Bryla and Kevin Loney

And other third-party books on 11g new features.
[image: image3.png][image: image4.png]
7

 Paper 331

