Database – Best Practices

Managing Partitioned Objects Can Be a Nightmare
Michael S. Abbey Ntirety
Preamble
The presentation at COLLABORATE is an overview of partition maintenance operations, covering concepts, making suggestions, and directing attendees at proven areas of interest. It covers a plethora of material designed to instill interest in attending to important work that may not always be covered by the vendor’s offering. This paper zeros in on one kind of partition maintenance, offering a roadmap in a "how-to" format with computer code and examples. Please keep in mind that the computer code is intended as an example, requiring tweaking to suit the needs of your environment. All the code has been tested and run successfully; syntax errors have been eliminated.
If you end up pulling some code from this paper and it does not run error-free for you, it will need some attention before you can get it to run successfully. There are idiosyncrasies sometimes between different environments that keep code from running fine with no editing. I cannot guarantee the code will run correctly as it did for me …
Most of the SQL in this paper that writes SQL should be run after the following sqlplus environment settings are in place:

set echo off lines 999 trimsp on feed off ver off pages 0
After running the SQL, do the following to view the results as the script just created runs:

set echo on feed on lines 100
Let's get started ...
The task at hand
We will follow a set of steps and some code in response to the following requirement:

Add partitions to NTIRETY's CLIENTEL table for the calendar year 2008. CLIENTEL has four local partitioned indexes. Once the work is accomplished, it is expected it will conform to the following:

1. Data partitions must be in their own tablespace
2. Same for all index partitions

3. Data and index partitions must conform to existing naming conventions
Reconcile partition table owner
Often the work done as described in this paper is carried out in a SYSDBA account. Let's ensure we are prepared to work on the right table, finding one and only one such-named table in the database:

-- Who owns the table?

select owner from dba_tables where table_name = 'clientel';

OWNER

NTIRETY

Convention used to name existing partitions

First we get the highest value for PARTITION_POSITION then see how the last ten are named. Once that is determined, we know where we stand on naming data partitions.
-- How high does PARTITION_POSITION go?
select max(partition_position)

from dba_tab_partitions where

table_name = 'CLIENTEL';

MAX(PARTITION_POSITION)

 84

-- What are the last 10 data partitions named?

select partition_name,partition_position

from dba_tab_partitions where

table_name = 'CLIENTEL'
and parititon_position > 74;

order by 2;

PARTITION_NAME PARTITION_POSITION

----------------------- ------------------

CLIENTEL_P200703 75
CLIENTEL_P200704 76
CLIENTEL_P200705 77
CLIENTEL_P200706 78
CLIENTEL_P200707 79
CLIENTEL_P200708 80
CLIENTEL_P200709 81
CLIENTEL_P200710 82
CLIENTEL_P200711 83
clientel_P200712 84

Where data partitions reside
Once we know the tablespace name(s) for these partitions, we will know whether we need to create any new containers. It is possible that all partitions may reside in the same tablespace regardless of their calendar year. Whilst this is not the ideal approach, there are no syntactical or physical requirements dictating they must reside separately.
-- Where are those partitions located?

select distinct tablespace_name

from dba_tab_partitions

where table_name = 'CLIENTEL';

DISTINCT(PARTITION_NAME)

CLIENTEL_2001
CLIENTEL_2002
CLIENTEL_2003
CLIENTEL_2004
CLIENTEL_2005
CLIENTEL_2006
CLIENTEL_2007
Size of current year tablespace data file(s)

Prior to creating the required tablespace for 2008, this will give us some space considerations based on 2007 consumption. At the same time, we discover where the files reside on disk and how they themselves are named.

-- Where are the 2007 partition tablespaces located?

select file_name
from dba_data_files
where tablespace_name = 'CLIENTEL_2007';

FILE_NAME

--

/db_ora2/oradata/prd/clientel_p2007_01.dbf
/db_ora2/oradata/prd/clientel_p2007_02.dbf
/db_ora6/oradata/prd/clientel_p2007_03.dbf
/db_ora6/oradata/prd/clientel_p2007_04.dbf
/db_ora9/oradata/prd/clientel_p2007_05.dbf
/db_ora9/oradata/prd/clientel_p2007_06.dbf
/db_ora8/oradata/prd/clientel_p2007_07.dbf
/db_ora8/oradata/prd/clientel_p2007_08.dbf
space consumption of 2007 data partitions
Naturally this will guide us as we determine how many files may be required for this new year.
-- How big are the files that make up the 2007 data partition tablespaces?

select sum(bytes)
from dba_data_files
where tablespace_name = 'CLIENTEL_P2007';

 SUM(BYTES)

 47,185,920,000
data partition checkpoint
Before tackling a similar task for the clientel index partitions, this is what we now know about the soon-to-be data partitions:

1. One partition exists for each month of each calendar year

2. Those data partitions are named clientel_Pyyyymm
3. Each data partition resides in a tablespace named clientel_Pyyyy
4. Data files in supporting each data partition are named clientel_pyyyy_nn.dbf

5. They must be able to accommodate at least 45Gb of data
 index partition details
Without the detail we paid when doing this for the data partitions, here are the queries and their results for the index partitions:

-- What are the indexes named?

select index_name

from dba_ind_partitions

where table_name = 'CLIENTEL';

INDEX_NAME

CLIENTEL_PK
CLIENTEL_N1
CLIENTEL_N2
-- What convention was used to name index partitions last year?
select index_name,partition_name

from dba_ind_partitions

where table_name = 'CLIENTEL'
and partition_position = 1;

INDEX_NAME PARTITION_NAME

------------------------------- -------------------

CLIENTEL_PK CLIENTEL_PK_P200701
CLIENTEL_N1 CLIENTEL_N1_P200701
CLIENTEL_N2 CLIENTEL_N2_P200701
-- Where are index partitions housed?
select distinct tablespace_name

from dba_ind_partitions

where table_name = 'CLIENTEL';

DISTINCT(PARTITION_NAME)

CLIENTELX_2001
CLIENTELX_2002
CLIENTELX_2003
CLIENTELX_2004
CLIENTELX_2005
CLIENTELX_2006
CLIENTELX_2007
-- Where are the 2007 index partition tablespaces located?

select file_name
from dba_data_files
where tablespace_name = 'CLIENTELX_2007';

FILE_NAME

/db_ora2/oradata/prd/clientelx_p2007_01.dbf

/db_ora2/oradata/prd/clientelx_p2007_02.dbf

/db_ora3/oradata/prd/clientelx_p2007_03.dbf

/db_ora3/oradata/prd/clientelx_p2007_04.dbf

/db_ora4/oradata/prd/clientelx_p2007_05.dbf

/db_ora5/oradata/prd/clientelx_p2007_06.dbf

/db_ora6/oradata/prd/clientelx_p2007_07.dbf

/db_ora6/oradata/prd/clientelx_p2007_08.dbf

-- How big are the files that make up the 2007 index partition tablespaces?

select sum(bytes)

from dba_data_files

where tablespace_name = 'CLIENTELX_P2007';

 SUM(BYTES)

 44,023,414,784
Creating the data and index tablespaces

We do this using as many potentially 2Gb files that may be required to contain the 2008 data. All database files are created at 100Mb, with autoextension up to 2001Mb in 100Mb chunks. Note how I use 23 files for each tablespace since 23*2=46 which is roughly the amount of data present from 2007 (I have eliminated the repetition of all 23 file names) …
-- Create tablespaces to accommodate 2008 partitions ...
create tablespace clientel_2008 datafile

'/db_ora_3/oradata/prd/clientel_2008_01.dbf' size 100m autoextend on next 100m maxsize 2001m,

'/db_ora_3/oradata/prd/clientel_2008_02.dbf' size 100m autoextend on next 100m maxsize 2001m,

. . .

. . .

'/db_ora_4/oradata/prd/clientel_2008_23.dbf' size 100m autoextend on next 100m maxsize 2001m

extent management local autoallocate;

-- Create tablespaces to accommodate 2008 index partitions ...

create tablespace clientel_2008_index datafile

'/db_ora_4/oradata/prd/clientel_2008_index_01.dbf' size 100m autoextend on next 100m maxsize 2001m,

'/db_ora_4/oradata/prd/clientel_2008_index_02.dbf' size 100m autoextend on next 100m maxsize 2001m,

. . .
. . .

'/db_ora_3/oradata/prd/clientel_2008_index_23.dbf' size 100m autoextend on next 100m maxsize 2001m

extent management local autoallocate;

-- Allow ntirety to accommodate space in the new tablespaces

alter user ntirety quota unlimited on clientel_2008;

alter user ntirety quota unlimited on clientelx_2008;

Finally … the partition additions!

Now that the infrastructure to support what we are trying to do is in place, we want to look at how the table is partitioned.

-- Inspect the HIGH_VALUE column from last partition (PARTITION_POSITION = 84) ...

select high_value from dba_tab_partitions

where table_name = 'CLIENTEL'

and partition_position = 84;

HIGH_VALUE

--

200801
From this query we deduce there is a single-column partition key. Based on the row placement mechanism used by Oracle, a row is placed based on the comparison between its partition key column value and all partitions' HIGH_VALUE. With the output above, we can expect that the last September to December partitions from calendar year 2007 would have HIGH_VALUE column values of 200709, 200710, 200711, and 200712. Table 1 illustrates placement for a handful of rows from these last four months of the year:

	Partition column value
	Highest HIGH_VALUE less than
	Placed in partition

	200709
	200710
	CLIENTEL_P200709

	200710
	200711
	CLIENTEL_P200710

	200711
	200712
	CLIENTEL_P200711

	200712
	200801
	CLIENTEL_P200712

Table 1: Placement of rows based on partition column values
Notice how the 200712 row gets handled:
	Partition with HIGH_VALUE
	Candidate partition
	Reason

	200709
	N
	200712 > 200709

	200710
	N
	200712 > 200710

	200711
	N
	200712 = 200711

	200712
	N
	200712 = 200712

	200801
	Y
	200712 < 200801

Table 2: Placement of December 2007 rows
The red text in Table 2 illustrates the logic of row placement with single-column partition keys. Rows are not placed in a partition until one is encountered whose HIGH_VALUE exceeds the value of the partition key in question. As you will see when we create the partitions shortly, the VALUES LESS THAN construct is used for partition boundary definition. In other words, the CLIENTEL_P200712 partition (HIGH_VALUE=200801) is the latest partition whose boundary exceeds 200712. Interestingly, when doing a date column-based partition key, the relationship between a row's key column value and its partition placement normally is one month (e.g. 200702 rows end up partition whose HIGH_VALUE=200703 and 200712 rows end up partition whose HIGH_VALUE=200801).
We are now going to add the 2008 partitions to CLIENTEL:

-- formulate partition add statements for the 2008 rows ...

alter table ntirety.clientel add partition clientel_p200801 values less than (200802) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200802 values less than (200803) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200803 values less than (200804) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200804 values less than (200805) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200805 values less than (200806) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200806 values less than (200807) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200807 values less than (200808) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200808 values less than (200809) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200809 values less than (200810) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200810 values less than (200811) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200811 values less than (200812) tablespace clientel_2008;

alter table ntirety.clientel add partition clientel_p200812 values less than (200901) tablespace clientel_2008;
Closing the loop

This is the step that separates the real techies from the fakers …

1. Fact: local indexes are maintained alongside their data counterparts with no intervention required

2. Fact: new local index partitions may not end up in their proper tablespaces as that hands-off maintenance is performed

3. Fact: new local index partitions assume a system-generated partition name that will inevitably violate naming conventions
Renaming improperly-named index partitions

This deals with point #3 in closing the loop. Using the CLIENTEL_PK index as an example, the 2008 partitions are supposed to be named CLIENTEL_PK_P200801 through CLIENTEL_PK_P200812. By inspecting their names from the data dictionary, more than likely you will find something like SYS_P0982 through SYS_P0993. The following code can be used to fix this anomaly.
-- Rename improperly named index partitions. I want the partition names to include
-- the month of their data (e.g., CLIENTEL_PK_P200801). The column we will use to assist
-- with forming the partition name is HIGH_VALUE. It is data type LONG and therefore
-- cannot be used directly in sqlplus. The following code will do what is required

-- in PL/SQL by spooling to a file. The contents of that spool file are then run

-- in sqlplus.

set serveroutput on size 1000000

spool clientel_ir

begin

 declare

 v_high_value varchar2(32767);

 v_partition_name varchar2(30);

 v_index_name varchar2(30);

 cursor get_data is

 select dip.index_name,dip.partition_name,dip.high_value

 from dba_ind_partitions dip,dba_part_indexes dpi

 where dpi.table_name = 'CLIENTEL'

 and dip.index_name = dpi.index_name
 -- Avoid trying to rename partitions that are already using the proper

 -- naming convention. As well, if we were to not exclude these

 -- properly named partitions, it would throw an ORA- error since the

 -- new name is identical to the old.

 and dip.partition_name not like 'CLIENTEL%_P2%'
 order by 1;

 begin

 open get_data;

 fetch get_data into v_index_name,v_partition_name,v_high_value;

 while get_data%found loop

 dbms_output.put_line ('alter index '||v_index_name||' rename partition '||

 v_partition_name||' to '||v_index_name||

 '_p'||v_high_value||' online;');

 fetch get_data into v_index_name,v_partition_name,v_high_value;

 end loop;

 end;

end;

/
spool off

Moving index partitions to the proper tablespace

This deals with point #2 in closing the loop. It's just about Miller-time. All that is left to do is rebuild any index partitions for 2008 in the CLIENTELX_2008 tablespace if they reside elsewhere.

-- Formulate statements to move (if required) the resultant index partitions into
-- their correct tablespace. These are local indexes. Thus when new partitions
-- were added to CLIENTEL, the index partitions were created at the same time.
-- Where they were placed is the concern here ...

select 'alter index ntirety.'||dpi.index_name||' rebuild partition '||

 dip.partition_name||' tablespace clientel_2008_index online;'

 from dba_part_indexes dpi,dba_ind_partitions dip

 where dpi.owner = 'NTIRETY'

 and dpi.table_name = 'CLIENTEL'

 and dip.tablespace_name <> 'CLIENTEL_2008_INDEX'

 and dpi.owner = dip.index_owner;
This join will create SQL statements resembling:

alter index ntirety.clientel_pk rebuild partition clientel_pk_p200801 tablespace clientelx_2008 online;

alter index ntirety.clientel_n1 rebuild partition clientel_n1_p200801 tablespace clientelx_2008 online;
alter index ntirety.clientel_n2 rebuild partition clientel_n2_p200801 tablespace clientelx_2008 online;

. . .

. . .

Wrapup

That was quite a journey. With 10g and 11g, Oracle offers more robust abilities and off-the-shelf routines to assist partition maintenance. I have found, even with this new-fangled ability, that partition maintenance often still needs human intervention.

about the author

Michael S. Abbey is a recognized authority on database administration, installation, development, application migration, performance tuning, and implementation. Working with Michael Corey and Ian Abramson, he has co-authored 16 books for McGraw-Hill's Oracle Press Series, including most recently Oracle Database 10g: A Beginner's Guide. Active in the international Oracle user community, Abbey is the director of events for and serves on the board of directors of the Independent Oracle Users Group (IOUG). He is a frequent speaker and keynoter at user group and vendor conferences and has appeared at such events as IOUG Live!, COLLABORATE, Oracle Open World, the European Oracle User Forum, and UK Oracle User Forum.

7

 Paper #325

