
1

<Insert Picture Here>

Application Change Management and Data Masking

Jagan R. Athreya (jagan.athreya@oracle.com)
Director of Database Manageability
Oracle Corporation

2

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Application Change Lifecycle

Install

DEV PRODUCTION

Customization

STAGING

Change
Package

3

Change is constant

• Production Compliance:
– How to avoid downtime due to out-of-band

changes to production databases

• Application Upgrades:
– How to accelerate application upgrade

cycles through faster upgrade and testing
of application modules

• Environment Synchronization:
– How to keep application environments in

sync to ensure consistent performance in
test, development, staging & production

• Custom Development:
– How to improve application developer

productivity by rapidly synchronizing
changes in a distributed development
environment.

Cost of Application Upgrades

• Research study on
application upgrades

– $1,839 per business user

– 1 man-week of labor per
business user

• Company with 5000 business
users will spend

– $9.2 million
– 20.7 man-years

to perform an upgrade

4

<Insert Picture Here>

Change Management

Automation of Developer Changes

• Developers make
schema changes all the
time

• Changes to schema
need to be promoted to
all development teams
rapidly

5

Promoting Development Changes to Production

• Tracking changes to
production databases

• Promoting changes from
Testing to Staging to
Production

• Transferring schema & other
database changes to training,
reporting environments

Production

Staging TrainingDev

Reporting

Managing Application Upgrades

Customization:
Invoice Check Printing Module

Dependencies:
• PO_VENDORStable
• AP_CHECKS_PKG package &

package body

Steps

1. Create Baseline based on
dependencies

2. Upgrade application
(EBusiness Suite 11.5.09 to
11.5.10)

3. Compare upgraded
application schema with
baseline

4. Identify changes

5. Upgrade customization
modules accordingly

6

Maintaining Production Compliance

• Identify out-of-band changes
to production database

• Best practice: weekly
comparison report of current
production against gold
master baseline of production
schema

Index

Normal
performance

Loss of
performance

Change Management Concepts

• Source
– Database or Baseline from where change is captured or propagated

• Target
– Database to which change is to be Synchronized

• Baseline
– Captured snapshot of various object definitions in a database

• Compare
– Schemas can be compared between two sources.

• Synchronize
– Schemas changes can be propagated from source to target

• Data Copy
– Data can be propagated or preserved in source or target

7

Capture Application Baseline

• Capture information on
all schema objects for an
application
– Tables, Views, Indexes
– Procedures, Packages,

Triggers
– Users, init.ora

• Capture scope
– Database
– Schema
– Objects

• Version each baseline
Base
line 1

Base
line

2

Base
line

3

HR OE IX

EMP
DEPT

ORDERS SALES PRODUCT PRICE

MD
API

Capture Baseline Workflow

• Figure out the list of
objects in the capture
scope

• Use Meta Data API to
capture XML
representations.

• Store XML in EM
repository and associate it
to the captured baseline

HR OE IX

EMP DEPT ORDERS SALES IXP IXQ

8

Compare Baselines or Databases

• Compare Modes
– Baselines to Baselines

– Baselines to Database
– Database to Database

• Compare Scope
– Schemas
– Object types (Tables, Index

etc)
– Non Schema Objects (Users,

Grants, Profiles etc)
– Storage Parameters (Table

spaces, extent size etc)

Baseline

Prod

Baseline

Baseline

Prod
Prod

Comparison Workflow

• Use existing baseline or
capture a temporary baseline

• For each object do an XML
comparison to generate a
XML difference document

• Generate a comparison report
from XML difference
document

• On subsequent compares use
last DDL time to limit
comparisons to objects with
changes

Aug
2004

XML Compare

MD API

Diff Doc

9

Synchronization

• Synchronization modes
– Unattended Synchronize
– Interactive Synchronize

• Synchronize source can be
baseline or database

• Synchronize target is always a
database

• Interactive Mode
– Specify scope (schemas, object

types to sync)
– View Comparison results
– Exclude objects from sync

– Generate a script and impact report
– Execute Synchronization script

Dev
Baseline

CM Compare
Processor

Prod

Prod

Compare Results

Script generator

Execute Script

Script

Change Manager Sync Processing

DEV

PROD

XML
Differ

CM
Capture

Diff
Analysis

Agent

Dependency
Analysis and

Script
Generation

RDBMS MDAPI

RDBMS MDAPI CM
Capture

DDL to
recreate

or
modify

JOB
System

SQL
Script

10

Change Management

1. Run Dictionary Comparison job
2. Identify all schema and

initialization parameters
differences in report.

Identify schema changes: Before and Now

Before
1. Identify databases, test and production
2. Get access to application schema
3. Write script to get table column parameters
4. Run script on first database
5. Run script on second database
6. Visually compare results
7. Write new script for indexes
8. Re-run script
9. Repeat for all other database objects
10. Generate a report listing changes
11. Write script to apply changes
12. Apply changes
13. Repeat above steps to verify changes
14. Re-run this for training and production
15. Re-run this for development and production

Scenario: Compare test and production schema

Application Change Lifecycle

DEV

TEST

PRODUCTION

STAGING

Clone +
Mask

Share

11

Business Drivers for Data sharing

Application Testing
• Offshore or in-house application

development

• Offshore or in-house software QA

Data sharing
• Claims processing

• Offline reporting

• Data archival and retrieval
• Marketing analysis of customer data

• California Database Security
Breach Notification Act

• Sarbanes Oxley Act of 2002

• US HIPAA Act

• US Graham-Leach-Bliley
Financial Services
Modernization Act

• EU Data Protection Directive

<Insert Picture Here>

Data Masking

12

Data masking concepts

What
• The act of anonymizing customer,

financial, or company confidential data
to create new, legible data which
retains the data's properties, such as
its width, type, and format.

Why
• To protect confidential data in test

environments when the data is used
by developers or offshore vendors

• When customer data is shared with
3rd parties without revealing
personally identifiable information

45,000111-49-3849FPENZXIEK

80,000111-97-2749KDDEHLHESA

60,000111-34-1345BKJHHEIEDK

40,000111—23-1111ANSKEKSL

SALARYSSNLAST_NAME

45,000093-44-3823FIORANO

80,000989-22-2403D’SOUZA

60,000323-22-2943BENSON

40,000203-33-3234AGUILAR

SALARYSSNLAST_NAME

Major features
• Automatic database referential

integrity when masking primary keys
– Implicit – database enforced
– Explicit – application enforced

• Data mask format library

• View sample data before masking
• Application masking templates

• Define once; execute multiple times

Data Masking

Production Staging

Mask Test

Test

CloneClone

13

Format Libraries

• Mask Primitives
– Random Number

– Random String
– Random Date within range
– Shuffle

– Sub string of original value
– Table Column

• User Defined Function
– National Identifiers
– Social Security Numbers

– Credit Card Numbers

User-defined mask formats
Email notification testing

14

Masking Definitions

• Associates formats with
database
– Maps formats to table columns

being masked

– Defines dependent columns
– Associated Database target

• Automatically identifies
Foreign key relationships

• Can specify undeclared
constraints as related columns

• Import-from or export-to XML

• “Create like” to apply to similar
databases

Referential Integrity Enforcement

Database
-enforced

Application
-enforced

15

Pre-Masking Validation

• Ensure uniqueness can be
maintained

• Ensure formats match column
data types

• Check Space availability
• Warn about Check Constraints

• Check presence of default
Partitions

Masking Workflow

S
ec

u
ri

ty

A
d

m
in

D
B

A

Identify
Data

Formats

Identify
Sensitive

Information

Format
Library

Masking
Definition

StagingProd Test

Review Mask
Definition

Execute
Mask

Clone Prod
to Staging

Clone Staging
to Test

16

Data Masking Internals

Rename
table

Build mapping table
containing original

sensitive and
masked values
using masking

routines

Recreate masked
table copy &

populate using
renamed original

table and mapping
tables

Restore
Constraints

based on
original table

Collect
statistics

Disable
Constraints on

table

Drop
Renamed
table and
mapping

table

Performance

• Optimizations
– SQL Parallelism for tables > 1 million rows
– Statistics collection before & after masking
– CTAS statement with NOLOGGING

Test results
• Linux x86 4 CPU: Single core Pentium 4 (Northwood) [D1]
• Memory: 5.7G
• Column scalability

– 215 columns masked across 100 tables
– 60GB Database
– 20 minutes

• Rows scalability
– 100 million row table, 6 columns masked
– Random Number
– 1.3 hours

17

Application Change Lifecycle

Upgrade

DEV

TEST

PRODUCTION

STAGING

Clone +
Mask

Share

Online Application Upgrade

• Large, mission critical applications are often
unavailable for tens of hours while a patch or an
upgrade is installed

• Oracle Database 11g Release 2 introduces
revolutionary new capabilities that allow online
application upgrade with uninterrupted availability of
the application

• The pre-upgrade application and the post-upgrade
application can be used at the same time

• End-user sessions therefore enjoy hot rollover

18

The challenge

• The installation of the upgrade into the production
database must not perturb live users of the
pre-upgrade application
– Many objects must be changed in concert. The changes must

be made in privacy

• Transactions done by the users of the pre-upgrade
application must by reflected in the post-upgrade
application

• For hot rollover, we also need the reverse of this:
– Transactions done by the users of the post-upgrade

application must by reflected in the pre-upgrade application

The solution: edition-based redefinition

• 11.2 brings these revolutionary new features: the
edition, the editioning view, and the crossedition
trigger

– Code changes are installed in the privacy of a new edition.

– Data changes are made safely by writing only to new columns
or new tables not seen by the old edition

• An editioning view exposes a different projection of a table
into each edition to allow each to see just its own columns

• A crossedition trigger propagates data changes made by
the old edition into the new edition’s columns, or (in hot-
rollover) vice-versa

19

The solution: editions

• 11.2 introduces the new nonschema object type,
edition – objects are versioned within an edition

• A database must have at least one edition

• You create a new edition as the child of an existing
edition – and an edition can’t have more than one
child

• A database session specifies which edition to use

(of course, the database has a default edition)

Editioning views

• Think of it like a noneditionable physical table body
with an editionable logical table spec

• Of course, you can’t have more than one editioning
view for a particular table in a particular edition

• Application code should refer only to the logical world

• You can create table-style triggers (before or after
statement or each row) on an editioning view using
the “logical” column names

• A SQL optimizer hint can request an index on the
physical table by specifying the “logical” column
names

20

The solution: crossedition triggers

• The new crossedition trigger has special firing rules

• You create crossedition triggers in the Post_Upgrade
edition

– The paradigm is: don’t interfere with the Pre_Upgrade edition

• The firing rules rules assume that

– Pre-upgrade columns are changed – by ordinary application
code – only by sessions using the Pre_Upgrade edition

– Post-upgrade columns are changed only by sessions using
the Post_Upgrade edition

Change Management

� Application Managers:
Manage application
upgrades effectively and
efficiently

� DBAs: Helps with audit,
compliance and
management reporting

� Developers: Eliminate
errors/data loss and down
time when making changes

21

Data Masking

• Helps sharing of production
data in compliance with data
privacy policies.

• Delivers uniform application
of mask formats across all
enterprise data

• Increase DBA productivity by
automating the discovery and
masking of sensitive data.

Online Application Upgrade

• Large, mission critical applications can now be
continuously available while a patch or an upgrade is
installed

• The pre-upgrade application and the post-upgrade
application can be used at the same time

• End-user sessions therefore enjoy hot rollover

• The pre-upgrade application is retired only when no
sessions any longer are using it

22

