Databases

Database Development Best Practices: Supporting Agile/Extreme Programming

Shyam Varan Nath, BIWA SIG / Citco

Abstract

Here we will look at the role of the development DBA and some the best practices around that. Agile or extreme programming is becoming the buzz word and we will look at how DBA's and Database Developers can follow some processes to improve and add efficiency to the database changes - both schema and data changes. We will take an approach to club the changes into three logical groups and each group of changes - namely schema changes, data changes and object (procs, functions, triggers) changes, are handled independently. We will show how to develop the one time framework to support this methodology and track the status of the database changes using this framework. This approach will be useful to salvage large databases when applying a lot of changes to database and prevent prevent refesh of large user schemas. We will show that using this framework that the correct order of database changes are ensured as database patches are assigend sequential numbers in this framework.

Index Terms— Database Development, Database patches, schema changes, Agile Development, Scrum, Xtreme programming.

Introduction

Agile software development is a buzz-word word in the industry today. Not only does it apply to new application development, variants of this allply to data warehousing projects as well. Oracle’s recommended BI and DW implementation frameword advocates 120-day cycles with deliverables in each cycle. Agile deveopment in general is a conceptual framework for software engineering that promotes development iterations throughout the life-cycle of the project. There are many agile development methods; most minimize risk by developing software in short amounts of time. Software developed during one unit of time is referred to as an iteration or Sprint, which may last typically a few weeks. Scrum is one of the processes used to achieve agile development by defining a set of practices and pre-defined roles. Here the main roles are the ScrumMaster who maintains the processes and works similar to a project manager, the Product Owner who represents the stakeholders and the Team, which includes the developers. We show a graphical flow of the Scrum process. The changes to software including the corresponding changes to database is recorded in the product backlog which is like the running list of new requirements, features, defect fixes etc. The increments of work are called Sprints that the team undertakes at one go. This way the end user get a tangbile output at the end of each Sprint.

Here, we will focus on the impact of agile development on the database developers or DBA’s supporting such an environement. In other words how can the database schema changes, data changes and changes to the stored business logic in procedures, functions and triggers be carried out in perfect harmony of small and iterative cycles. Likewise, how can we mimimize the impact of accidental damage to large production or test databases while carrying out the incremetal changes.

[image: image1.png]==

Product Backlog Sprint Backlog Sprint

Working increment
of the software

Fig 1 Scrum Flow Diagram

Requirements Gathering

The traditional method or the Waterfall methodolgy of software development typically called for a large users requirements document or URD upfront. However, let’s refer to the below pie-chart, we see that this is not the most effective method. This confirms our belief that iterative approach is the preferred approach and the DB team has to be fully ready to support that.

[image: image2.png]Average percentage of delivered functionality actually used when a
serial approach to requirements elicitation and documentation is
taken on a *successful” information technology project.

Sometimes

Rarely

Never

Database Development Tasks

If you are a DBA or database developer and supporting application development or production support related tasks, what are the major landmarks? My personal experience tell me:

· Development phases of new application (it could be deployment of new packaged application with customization instead)

· Rollout of the application

· Periodic new features, enhancements released in phased manner

· Hot fixes / defect fixes for purely production support.

It is important to have release names and number to systematically track there. Let’s take for argument phase that there are three phases of development First, Second and Third phases before the product is released. During these phases the database schema goes through a lot of changes as requested by the DB architect and the developers. At this stage the database is mainly driven by schema changes and contains only development/sample data and some initial loads. The database changes can numbered in to builds lets say build 101 ….115 as the different builds for Phase One. Likewise build 201…210 for phase two and so on. These builds must be tracked inside the database so that an Database can be queried for its level or even a database schema export file when restored can incidate the level where it is at. Likewise, there are some initial dataloads often done to the database and the versions of these need to be tracked the same way.

Likewise, when the application is rolled out and say it at product version 1.0. The enchancements are planned over the next few months such as version 1.1, 1.2 etc. leading to say 2.0 in 2 years. In between, say the only changes allowed are production support showstoppers that are released as hot fixes namely 1.1.1, 1.1.2 etc. Such hierarchical naming provides some degree of structure and helps to keep different stakeholders on the same page. However, corresponding to each of these main product release numbers, the different compoments such as the GUI, middle tier, database schema, other esssential third party compoments etc will be at different levels and a product conformance matric has to be maintained to track all the pieces. Fig 2 shows an example of the product conformance matrix.
	
	
	
	
	Product Conformance Matrix
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	Product Version
	
	Database compoments
	
	
	Application Components
	
	
	Third Party Components
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	DB Schema
	System Dataloads
	
	GUI
	Middle

Tier
	
	DB Version
	WebServer Version

	
	
	
	
	
	
	
	
	
	
	

	1
	1
	
	308
	3
	
	30c
	3.3
	
	Oracle 10.2.0.2
	Welogic 8.1

	
	
	
	
	
	
	
	
	
	
	

	2
	1.1
	
	311
	3
	
	30d
	3.3
	
	10.2.0.3
	Weblogic 8.2

	
	
	
	
	
	
	
	
	
	
	

	3
	2
	
	406
	4
	
	40e
	4.2
	
	11.1
	Weblogic 9.0

Fig 2 A Sample Product Conformance Matrix

In this section we describe how to organize the database files in a very structured way such that it is a very scalable framework yet quite organized for small sprints. The below snapshot shows database script files stored in a folder/sub-folder structure that comprises of one of the builds we talked about. In this example the readme file tell about the contents and how to run those. Here the DB configuration and users, tablespace related files are stored in the IntialFiles folder. The basic tables, constraints, indexes, procedures, functions, triggers etc are stored in the ScehmaEtc folder. The Initial DataLoads or often called System Loads are stored in the DataLoads folder. The optional features of the product can be initialized using the Optional folders and some of the data loads to populated samples for these are in PackageData. The DB_Counts are basically a set of check and balance to make sure all the objects are created properly and match the master list.

[image: image3.png]Qo - (O (T oot |7 rotrs|

cicress | £ Ciworking)CollsborateoslpapersiDatabasel radeBuldza?

olders x
- & Cusondata
3y Docurents

2y Compuer

= % Local Disk (C:)

© oromn

© Docuerts and ettgs L
S omers

© e

S Method

& MsoCache

IntiaFies

Schemakt:

[WRUAN

(RN

"

Dataloads

optional

orade readne.tit
Text Document
sk8

]
]

DB_Counts

PackageData

Fig 3 A snapshot of Organized Filesystem with Different Database Files

An excerpt of such a readme file is presented below:

To create a new database in Oracle, an instance must be created first.

NOTE: As a standard, the instance and database name will always be the same.

****** Notes for Product Phase 2 ***********

1. A new paremeter must be added in the init.ora file:

- job_queue_processes = N

where N is any number from 1 to 36. One process is assigned to one active bill run.

The higher the value of N, the more overhead on the database.

2. Prior to running the oracle_schema.cmd, login as sys and execute the following code:

- grant select on dba_jobs to schema_owner;

3. The optional feature FR 2130: Security Enhancements allows logging in of users.

 To enable failed logins, a database-level trigger has to be applied as SYSTEM.

 This task may require a DBA if you do not know the system password or if you do

 not have access to the database server.

 To apply the trigger:

 1) Logon to the database as SYSTEM using sqlplus

 2) Apply the trigger tae_log_errors provided under the Optional folder

 by running @tae_log_errors.sql

 NOTE FROM ORACLE:

 Care must be take using AFTER LOGON triggers since if they become invalid or

 fail to fire because of another error, such as running out of space in a

 logging table, users are prevented from logging in (even DBA users). If you

 have an AFTER LOGON trigger that becomes invalid and does not recompile,

 you receive the following error:

 $ sqlplus system/pwd@DBstring

 ORA-04098 : trigger 'LOGON_AUDIT' is invalid and failed re-validation

 The solution is to use SVRMGRL and CONNECT INTERNAL and disable the trigger

 until you can investigate it and make the correction.

 SVRMGR> connect internal

 Connected.

 SVRMGR> ALTER TRIGGER system.logon_audit DISABLE;

 Statement processed.

 Now users can logon.

4. The following tablespaces must exist in the database for the SchemaEtc scripts

 to run without errors - datadbs, indexdbs, transdbs, transind, prcquedbs, prcqueind,

 evntquedbs, evntqueind, evnterrlogdbs and evnterrlogind.

SCHEMA BUILD:

1. The schema is created by running the schema script from the SchemaEtc directory.

 From the MS DOS Prompt, change directory to the build directory that contains the SchemaEtc

 folder and run the following command (in NT):

 >oracle_schema.cmd <databasename> <schema_user password>

2. Review schema_SID.log file created in the SchemaEtc directory for error messages.

__

CORE DATA LOAD:

1. Core data is loaded by running oracle_dbinit.cmd script (from DataLoads directory).

 From the MS DOS Prompt, change directory to the build directory that contains the DataLoads

 folder and run the following command (in NT):

 >oracle_dbinit.cmd <databasename> <schema_user password>

2. Review dbinit_SID.log and crttrigs_SID.log in the Dataloads directory for error messages.

__

PACKAGE DATA LOAD

To populate the database with sample industry specific data, you have to run additional

scripts in the PackageData directory.

1. Run common scripts first. The common scripts will populate the Database with Data common

 to CLEC and Data Services Packages. Run the following command:

com_clecdlec.cmd <databasename> <schama_user password>

2. To create a Optional market module run the ABC_optional scripts against a database that is populated

 with the common scripts. Run the lollowing command:

ABC_Options.cmd <databasename> <Schema_user password>

3. To create a Data Services market module run the Data_srv scripts against a database that is

 populated with the common scripts. Run the following command:

data_srv.cmd <databasename> <schema_user password>

Challenges for a Database Developer / DBA

In this section we will look the challenges for the database professionals when the environment is rapidly changing and there frequent internal or external releases of the product. Based on the product confromance matrix, let us consider a scenario, where the latest release out in the field is 1.1.3 (Release 1.1 with a few hotfixes on it). The developers are busy working on the Product version 2.0 (with three phases first, second and third). While the development is at Phase 3, the QA is testing Phase 2 and the business folks are still doing the Business Acceptance Testing (BAT) on Phase 1. So as the DBA team member will you:

A. Go Crazy with all these releases in house OR

B. Use the DB schema numbering methodology above to keep it under control.

If I were you, my final answer will be B !

Database Patch Framework

Here we will look at how to develop the database patch framework so that we can trace the order and success of the patches themselves and prevent wrong patching of the database. The two main tables are PATCH HISTORY table and the PATCH STATUS table. The later stores the different statuses of the patching process for each patch. Since we broke each patch into three chunks namely the schema changes, data changes and the new objects like procs/functions etc. we need to track the progress of each of these three stages as the patch is applied and if it fails at a certain level of the patch.

create table V_PATCH_STAT

(

 stat VARCHAR2(2) not null,

 stat_txt VARCHAR2(80) not null,

 crt_usr VARCHAR2(30) default 'user' null ,

 crt_dttm DATE default sysdate null ,

 mdfy_usr VARCHAR2(30) null ,

 mdfy_dttm DATE null);

create table V_PATCH_HIST

(

 patch VARCHAR2(25) not null,

 patch_level VARCHAR2(10) not null,

 patch_date DATE default SYSDATE null ,

 version VARCHAR2(10) null ,

 patch_stat VARCHAR2(2) null);

To support this framework we need a couple of stroed procedures to carry out the change of status during the actual patching process. We define the patch numbers (the sequential assigned numbers) in the beginning as below:

DEFINE patch_name="DBPatch" (CHAR)

DEFINE patch_number="237" (CHAR)

DEFINE patch_version="2" (CHAR)

Then we invoke the stored procedure to check if this patch was already run or if the pre-requisite patch is present and in a successful status:

-- !!! Change Previously required patch !!!

exec BP_INSERT_PATCH_HIST('&patch_name','&patch_number', '&patch_version', 'DBPatch','236', '1');

So if the patch being run is 237, 236 is indicated as the pre-requisite patch and this part of the patch 237 will only be executed if the precondition is met. Also all the schema changes of this patch are coded as stored procedure for each set of change as below:

--

-- [S1] Adding column pay_recv to PAYMENT_BATCHES

--
Payment Batch Performance Inprovements

-- CODE: TKYTE

--

create or replace procedure sp_patch_237_S1 as …

create or replace procedure sp_patch_237_S2 as … etc

All these changes are invoked as one wrapping stored procedure (sp_patch_schema) that also marks the status in the PATCH HISTORY

CREATE OR REPLACE PROCEDURE sp_patch_schema

IS

BEGIN

DBMS_OUTPUT.ENABLE (100000);

 DBMS_OUTPUT.put_line ('EXECUTE sp_patch_237_S1');

 sp_patch_237_S1;

 DBMS_OUTPUT.put_line ('EXECUTE sp_patch_schema done');

 --Execute this if there are no schema changes to update status patch

 --DBMS_OUTPUT.put_line ('No schema changes for this patch');

END sp_patch_schema;

/

execute BP_SCHEMA_CHANGES('&patch_name', '&patch_number', '&patch_version');

drop procedure sp_patch_237_S1;

drop procedure sp_patch_schema;

Now let us look at how each stored procedure for set of schema changes coded dynamically.

create or replace procedure sp_patch_237_S1 as

p_count NUMBER;

begin

select count(*) into p_count from user_tab_columns where table_name = 'PAYMENT_BATCHES'

and column_name = 'PAY_RECV';

If (p_count <> 1) THEN

EXECUTE IMMEDIATE 'alter table PAYMENT_BATCHES add pay_recv DATE';

END IF;

END;

/

This helps to make the code segment re-runnable and accidental application of the same patch second time will skip the changes already present in the database. The patch output log will not throw an ORA-error that says column already present because this now means an Oracle DBA intenvention to check what that ORA error means.

The same paradigm is used for Data change section.

--===

-- Dataloads part of the patch

--===

--

-- [D1]

--

-- CODE: TKYTE

--

--create or replace PROCEDURE sp_patch_237_D1 as

--begin

-- dynamically check if the new data being inserted is already there to prevent PK violation

--end;

--/

Once all the data change segments are done, execute them as one chunk:

CREATE OR REPLACE PROCEDURE sp_patch_data

IS

BEGIN

DBMS_OUTPUT.ENABLE (100000);

 --DBMS_OUTPUT.put_line ('EXECUTE sp_patch_237_D1');

 --sp_patch_237_D1;

 DBMS_OUTPUT.put_line ('EXECUTE sp_patch_data done');

 --Execute this if there is no data changes to update status patch

 DBMS_OUTPUT.put_line ('No data changes for this patch');

END sp_patch_data;

/

show errors;

execute BP_DATA_CHANGES('&patch_name', '&patch_number', '&patch_version');

--

drop procedure sp_patch_data;

--drop procedure sp_patch_237_D1;

Unlike the schema change chunk, any single error can rollback the whole chunk of data loads.

--===

-- Procedures part of the patch

--===

The procedures, functions and triggers part of the patch cannot be easily wrapped inside another procedure so will get applied even if the schema or the data part of the patch fails but it is easier to restore the stored procedures and similar objects to the orginal level even from a schema only dmp (a schema dmp is much easier than backing up or restore of the full schema with production grade large amounts of data) . It is possible to write more elegant error handling to read the status and abort the patch script at this stage but that will typically require shell scripting.

Summary

We here developed a framework of database patching process to support agile software development process that requires frequent changes to the structure and content of the Oracle database. The patch framework build some degree of intelligence in the patch process and the patch status tables that controls its executive flow to reduce the potential damage to the database due to accidental re-run or out of order application of the database patches to the large production or production like databases. Using this free and easy to implement framework DBA’s and Developers can save several hours that goes to restore of large databases to a point in time without the need for flashback of the whole database.

11

Paper #

_1267181677

_1267185443

_1267095396

