Insert focus area name here

PEOPLESOFT: PROPERLY INSTRUMENTED FOR PERFORMANCE
TUNING?

David Kurtz, Go-Faster Consultancy 11d.

As a consultant who specialises in performance tuning, the recently introduced PeopleSoft Performance Monitor has been of
particular interest to me. It has provided a method to collect various performance related metrics from the PeopleSoft
technology without the need to resort to esoteric scripts. It enables the user to determine how much time was executing which
part of the application, and in which tier of the technology.

Since version 6 of the Oracle RDBMS, it has been possible to enable SQL*Trace (event 10046) on a session since. Additional
code in the Oracle kernel writes information to a trace file about every SQL statement, parsed and executed, every fetch
operation and execution plan, and how long each operation took. The trace can be enhanced to additionally record time spent
waiting on an ever-growing list of database events, and the values of bind variables referenced in the SQL statements. Hence,
the DBA can determine exactly what is going on and how long it is taking.

As a young naive DBA I used to believe that all you had to do to improve the performance of the database was measure the
buffer cache hit ratio, and if it fell below 90% then it was time to add more memory to the block buffer cache. Later, I learnt
that performance tuning is all about the time lost when a user waits for the application. SQL*Trace files can be processed with
either Oracle’s TKPROF, Trace Analyser or a third party profiler in order to identify the SQL operation, or database event that
took the most time. However, over the years as multi-tier web-orientated architectures have become prevalent, applications
spend less time in the database and more time executing code in an application server ot java servlet (or both in the case of
PeopleSoft). Therefore, I increasingly see Oracle reporting significant quantities of time spent on the event ‘SQL*Net message
from client’. DBAs often discarded this as a mere ‘idle event’, but the database might be idle because the middleware is busy,
in which case this is time lost to a user that affects performance. It is ironic that as time-based analysis of performance issues
has become generally recognised as the most (if not the only) effective technique, the tools that Oracle provide to investigate
database performance issues have been made less effective in resolving system performance issues.

PeopleSoft have instrumented every part of their Enterprise PeopleTools technology, from release 8.44. As each operator
action generates activity, this can be recorded as a number of transactions. These are recorded in the database. It is now
possible to determine exactly which operator executes which piece of code and how long it took to execute. You can think of
the PeopleSoft Performance Monitor as event 10046 for the application.

PeopleSoft used its own existing PeopleTools technology to collect and store the performance data. A new servlet was added
to the web server to receive performance metrics from the instrumented processes, and a new server process was added to the
application server to store that data in the database. Each of the instrumented processes connects over HTTP to the
monitoring servlet.

1 Paper #

Insert focus area name here

Browser

PIA
Servlet

PPMI
. Servlet
(presentation

& JavaScript) Monitor
Servlet

Monitoring System

Browser

Screen | Java PIA
Paint Script Servlet

(presentation
& JavasScript)

Monitored System

Figure 1. PegpleTools Performance Monitor Architecture

Although a system can monitor itself, the recommended configuration is for one PeopleTools system to be configured to
monitor another. Thus the overhead of storing performance data is not borne by the monitored system. To configure the
Performance Monitor is merely necessary to give the monitored system the URL of the monitor servlet in the monitoring
system.

Performance Metrics are separated into Transactions and Events.

Events are instantaneous metrics that can be sampled periodically, such as CPU and memory utilisation, or are collected in
response to a certain conditions, such as the time-out of an ad-hoc query.

Transactions are a part of the activity that occurs when a user does something in the application that causes an interaction with
the middleware. Therefore, they also have a duration. One interaction will produce a hierarchy of many transactions; this is
called a Performance Monitoring Unit (PMU). The Performance Monitor can be configured to sample PMUs across the
system, say 1 in every 40, so that a picture of the whole system can be built up, without creating excessive load. It is possible
to enable the Component Performance Trace, which collects all the PMUs for a user’s session.

The Performance Monitor is supplied with a number of analytic pages that perform queries on the performance data back
from the database. For example, Figure 2 shows the system summary page from which you can drill into individual server
processes.

2 Paper #

Insert focus area name here

System Performance
System ID: 1

User Sessions: a

Tuxedo Requests Queued: 0

Name Agent Date/Time

psexcel 0672005 11:44:13
psfdlive 060772005 11:43:57
psfalivel 0BM7r2005 11:43:40
ibroker 060772005 11:43:33

Database Name:

Current User Sessions

. Jalt Request
PMUSs in Past Hour: i] OpenPMUs Completed PhlUs Application Server
Alarms in Past Hour: 0 Alarm History 260 I B B e e R
Batch Jobs in Process: 1 Master Scheduler Gk 02 0'4_ in N
Duration {ms)
Batch Jobs in Queue: i
'eh Servers Cu
- - ji i - !!!
Hame Agent Date/Time HostPort Filter Level SESSIONSINNVELS ElHEm Execute Threads
App Used
peaplesoft 0B/07/2005 11:43:11 peaplesoftd1:80:443 L D] 139 14.4803 132

Refresh |

Wiew in Grid

pafdlive Last Page Refresh:

l Average |:| std. Dev.

User Response

Hard Page

Host/Port Filter Level %CPU Used %Memory Used
Faulis/Second
PEOPLESOFTO1:9020 L0n B 16.36 52.54 25.3
PEOPLESOFT1:9010 o0 B 16.57 5256 253
PEOPLESOFTO:3000 L0 B 15.78 52.65 265
FPEOPLESOFT1:9030 Lor B 15.43 63 632 251

Figure 2: System Performance Summary Page

These are standard PeopleTools components that are developed in the usual way. The analytics delivered in PeopleTools 8.45
are considerably more sophisticated. However, since the takeover of PeopleSoft by Oracle this area is unlikely to develop
further in PeopleTools, although, there is therefore nothing to prevent users from developing the own custom analytic pages.
For example, the chart in Figure 3 is from a component that identifies the top 10 transactions by cumulative execution time.
Clearly one transaction needs to be looked at closely.

b
View in Grid M [1tar0eri0 D B
. Sum Sample Sizel
P REGUISITIONS GEL.PW_REC DISTRIE_DET Click PeopleCode Command Button for Field PY_REQ SCH_WRE.PY_L
CONTENT_LIST GEL.COM_COMTLIST. Tab to Next Page (31
PAYMENT _EXPRESS GEL.PAYMENT_EXPRESS2 Sawe Compaonent (42
Pu_RECQUISITIONS GEL.PW_REC wF_PREWIEW Click PeopleCode Command Button for Field PW_REQ WRE PW_S80E_5
WCHR_EXPRESS. GBELWCHR_EXPRESS] Sawe Component (200
PROCESS MONITOR.GELPMN_PRCSLIST.Click People Code Command Button for Field PMMN_DERIWED . REFRESH_BTH (5
P _RECQUISITIONS. GEL.PY_WNDR_LOOKUP_WRE. Click People Code Command Button for Field WHDR_PAMNELS_WRE.FIR
PY_RECY_POLGEL. PY_RECW_WPO Launch PagefSearch Page (3
PURCHASE_ORDER. GELPO_LINE.Click Yes on Message Page (41
WHDR_ID.GELWNDR_LOC Click OF or Save to Save Secondary Page (0
TR IR R O T T OO T |
1] 250,000 500,000

Duration {ms)

Figure 3: Part of Top Component Page

Figure 4 shows the analysis of a Component Performance Trace of the part of the application with the problematic transaction
shown in Figure 3. It shows that during the trace 99.98% of the response time is waiting for SQL execution. This case is
clearly a SQL problem. You can see the SQL statements and the values of the bind variables order by execution time, starting
with the longest.

3 Paper #

Insert focus area name here

Reound Trip Details

Measurement

Taotal Trip

BGL

PackilUnpack Time
FPeopleCode
PeoplaTools Run Time

Action: Click Ok or Save to Save Secondary Page Component Buffer Size (KB):
Component: WHDR_ID.GBL PeopleCode Global Size {KB):
Page: WHDR_LOC SOL Fetches:

Round Trip Cache Status: Cached SOL Executes:

Pl Details

387.0332

PeopleCode Program Executions:

Duration (sec)
446.094
446.014

0.00a
0.02a
0.052

SOL Executes | SGL Fetches) [F=2F

% of Trip
100.00
99 98
0.00
0.01
0.01

Seq SOL Operation and Tables S0L Statement

SELECT

FS_VOUCHERB

SELECT %'from ps_pymnt_wchr_xref a, ps_waucher bwhere
abusiness_unit=:1 and a.business_unit= h.business_unit
and awaucher_id = byoucher_id and a.remit_setid = :2 and
aremit_vendor=:3 and awndr_loc =4 and

1 FS_PYMMNT_WCHR_KREF A, abank_acct_seq_nhr= 5 and a.pymni_method in

('BEF''GE'ACH"'EFT) and a pymnt_selct_status notin

Inline
PeapleCode

0.a7a9
144
6B

o

55.300

Figure 4: Analysis of Component Performance Trace

You have to cut and paste the SQL into a database tool, or just SQL*Plus, in order to get the execution plan. PeopleSoft
doesn’t do this for you because that is database platform specific (and of course you will probably be reviewing performance

data on a different database).

You can also look at PMUs in the trace. They can be presented as a hierarchy or tree (see Figure 5). The entries are listed in
the order they executed. You can see how much time each transaction took, and what other transactions where a part of it.

Paper #

Insert focus area name here

PMU History Tree

[= PMU Tree
[= 44F125.00 ms - PlA Request
(= 44672500 ms- JOL T Reguest
[= 446094.00 ms - Tuxedo Service PCode and SaL
[= 2.00ms-PeopleTools S@L Execute
JE 0.00 ms - B0L Fetch Surmmary
S 0.00 ms - Implicit Cormmit
[= 2.00 ms- PeopleTools Sl Execute
B 000 ms - 5@l Fetch Summary
B 0.00 ms - Implicit Commit
S 1.00 ms - Implicit Cormmit
[= 446049.00 ms - ICPanel
[= 44B04F.00 ms - Modal Level 1
[= 43.00 ms - PeopleCode Buillin SGL Execute
S 0.00 ms - SAL Feteh Summary
[= 455.00 ms - PeopleCode SQL Execute
B 0.00 ms - SAL Fetch Summary
[= 7203.00 ms - PeopleCode SGL Execute
B 0.00 ms - 0L Feteh Summary
[= 41898.00 ms - PeopleCode SGL Execute
S 0.00 ms - SAL Fetch Summary
[= 12893.00 ms - PeopleCode S0L Execute
B2 0.00 ms - SAL Fetch Summary
. P— ; p——

Figure 5: Performance Monitoring Unit Tree

You can then drill into individual transactions and see what they did, and what part of the application was executing, as shown
in Figure 6. So if you need to change the code, you can find it easily.

Generic:
YMDR_ID.GBL

PeopleCode Program:
RECORD BAMK_ACCT_SBR.FIELD BHK_ID_MNBR.METHOD SaveEdit

SAL Origin:
SCGLExec

Figure 6: Performance Monitoring Transaction Context

In conclusion, the PeopleTools Performance Monitor is extremely impressive. It is the more sophisticated that anything else I
have seen or heard of. It could revolutionise analysis of functional and performance problems. (It could also but me out of
business!]) When an end-user reports a performance problem, it is reasonable to ask them to enable the performance trace and
then demonstrate their problem. The customert’s in-house support team, who will necessarily be familiar with PeopleTools,
can understand and analyse the information, determine whether there really is a problem, and if necessary make changes to the
code.

I'll leave you with two questions: will the Performance Monitor will be built into the Fusion product from day one, and if so
will you have to pay extra for it PeopleTools Performance Monitor is not a separately licensed option. If you have
PeopleTools you have the Performance Monitor.

David Kurtz is a performance specialist working Enterprise PeopleSoft applications and Oracle (www.go-faster.co.uk). He is the author of
PeopleSoft for the Oracle DBA’, published by Apress (www.psftdba.com). He is a director of UK Oracle User Group.

5 Paper #

http://www.go-faster.co.uk/
http://www.psftdba.com/

