
SQL Tuning – Reading Recent Data Fast

Dan Tow
singingsql.com

Introduction
Time is the key to SQL tuning, in two respects: Query execution time is the key measure of a
tuned query, the only measure that matters directly to the user, and time is also the key
dimension for data pertaining to the large business-event tables that tend to dominate query
tuning problems. Specifically, real-world business queries normally look for recent business
events, events that are relevant to decisions and tasks that the business needs right away. Data
that is even three months old is often the business equivalent of “ancient history.”

Data types
Business data, and the tables that hold it, fall in two categories: Relatively unchanging reference
data, such as data on customers, products, regions, employees, et cetera, and data on business
events, such as orders, payments, invoices, customer interactions, et cetera. The events-type
tables tend to grow fastest, become largest, and dominate SQL tuning problems, partly because
they are so large as to be hard to cache. Fortunately, as we will see, it is unnecessary to cache all
events, only the most recent ones, to see excellent performance, as long as we follow design
principles described in this paper.

Natural heap tables, with natural clustering of recent rows
Fortunately, Oracle’s default table structure, simple heap tables, naturally places the most recent
rows on top, clustered in the topmost blocks with other recent rows. This layout is not only
simple for Oracle to handle at insert time, but it is also ideal for the usual scenario where almost
all business users from all corners of the application continually reference those most recent
rows, pertaining to the most recent events. These most recent blocks tend to end up very well
cached, either by reads from other users, or by our own reads (self-caching) earlier in the query
or from our own earlier queries. Recent-event master-table rows tend also to point to recent-
event detail-table rows, and vice-versa, so joined-to event tables also see excellent caching when
we reach them through nested loops. (The cost of such nested loops plans, in terms of actual
runtime, tends to be better than optimizers estimate, owing to this surprisingly good caching of
the joined-to table and index blocks.)

An analogy between good paper-based business processes, good event-based workflow
processes, and good data-based applications
There are some old rules-of-thumb regarding well-designed paper-based business processes,
from back when those processes dominated, rules designed to minimize inefficient paper
shuffling, and to avoid paper “slipping between the cracks:”

• The paper is touched or read by the minimum possible number of people, as few times as
possible.

• The paper is modified as few times as possible, by as few people as possible.
• As soon as possible, the paper is either discarded or filed away where it will likely never

need to be touched again.

COLLABORATE 08 Copyright ©2008 by Dan Tow Page 1

There are analogous rules that apply to good workflow processes, rules that are equally
applicable to paperless workflows:

• The business event involves the minimum possible number of people, as few times as
possible.

• The event generates as few workflow steps as possible, by as few people as possible.
• As soon as possible, all activity related to the event is completed, and the employees need

never refer to the event, again, except under rare circumstances.

These paperless workflow rules can be translated into rules for how we ought to access data in a
well-designed application running well-designed business processes:

• The row or rows related to a business event are touched by the database as few times as
possible.

• The event-related workflow triggers as few updates as possible.
• As soon as possible, all database activity for an event-related row is completed, and the

row ends up in a state where it need never again be touched by the database, except under
rare circumstances.

The last bullet, above, has some corollaries, or logical consequences:

1. If some rows do not quickly end up in this “closed” state, but instead figure into reports
months or years later, again and again, then the business process has an unintended,
endless loop!

2. Purging old data should have little effect on performance, if design is ideal, because those
old rows would never be touched, anyway!

3. Summarizing or reporting old events need only happen at most once, for any given event
date range. Re-summarizing the same old data repeatedly implies that we either “forgot”
to re-use the former result, or we suspect that history has been rewritten, both of which
tend to point to a process failure!

4. A repeatedly-executed query that violates this rule, querying the same old rows with
every repeat, usually points to a design flaw in the application, or a defect in the business
processes, or both!

Types of Conditions
The most common conditions in WHERE clauses of queries (when we have old-fashioned
queries that have not promoted join conditions into the FROM clause) are joins, usually simple
matches of foreign and primary keys that let the database navigate from master rows to matching
details, and vice-versa. The important conditions in tuning problems are the other conditions
seen – filter conditions, which discard (or, preferably, avoid reading in the first place) the subsets
of the data that are not needed by the query. From the perspective of this paper, there are four
sorts of filter conditions, defined by their relationship to the dimension of time in the events-
based tables.

Subset conditions unrelated to time
Most queries of business-events data include joins to reference tables that are more or less fixed,
data that is referred to frequently in relationship to events, such as data about customers,
employees, products, object types, regions, etc. Often, conditions, such as

COLLABORATE 08 Copyright ©2008 by Dan Tow Page 2

AND Region.Name=:region
refer directly to these reference tables, not to events data, so these conditions are necessarily
removed from the dimension of time, referring to a filter that would apply equally to old and new
events. Conditions such as this can be applied late in the join order, if they are not very selective,
without much inefficiency in terms of effort spent by the database reading rows that are later
discarded. Alternatively, if the condition is guaranteed to read just a single row, it is safe to read
that rows up-front, at the start of the join order, even in a Cartesian join. From this first, unique
condition, we might reach related events with a highly-selective join to a foreign key, such as a
read of orders by a single customer, or, better still, we could reach related recent-events with
nested loops to a concatenated index on both the foreign key and on some time-related column,
such as a read of open orders by a specific customer, or recently-shipped orders by a specific
customer. When the condition on reference data is not unique, nor very selective in terms of the
fraction of events it would point to, we may still choose a hash join of an early read of the
reference data and an independent read of just the recent events.

Time-independent conditions can reference time-independent columns of events-type tables, too,
though, such as

AND Order.Order_Type=’INTERNAL’

These time-independent conditions on events data would filter roughly the same fraction of new
events and old events, so they fail to correlate even approximately with the age of the event.
Conditions like this usually make poor driving conditions, by themselves, since they point to
progressively more rows as history accumulates, but these columns may be useful as part of a
concatenated filter index, where some other column of the index has the greater selectivity of the
condition that points especially to recent rows.

When a WHERE clause contains only filter conditions unrelated to time, the query will return a
rowcount that grows steadily according to the amount of history that has accumulated in the
database. Such a query result may look reasonable when the application is young, but will grow
steadily more cumbersome as the application ages, reporting the same old, tired data over and
over again, and likely becoming far too slow, with a high rowcount that is too large for a human
to properly digest.

Conditions explicitly restricting a date range for the events
A type of event may have several dates, each relating to some workflow event in the process of
handling the business event. For example, an order may be created on one date, booked on
another, shipped on a third, received on a fourth, and paid-for on a fifth. Reports commonly
restrict event data based on some date range for one of these workflow event dates, for example,
orders shipped (at least partially) in the past week. These conditions may not look very selective
to application developers building a new application, with little history in their “toy”
development databases, but in real applications, in production use, these conditions grow steadily
more selective the more history accumulates. These date columns can be useful to index, often in
combination with other columns that further restrict the subset of data desired in that date range.
However, when these date columns are indexed in multi-column indexes, they should usually be
the last column in the index, since the date condition is almost always a range, rather than an

COLLABORATE 08 Copyright ©2008 by Dan Tow Page 3

equality, and this prevents use of any columns following the date column to narrow the index
range scan.

Conditions on events’ workflow status
An example of a workflow-status condition would appear in a search for open orders ready to
ship, a search likely performed specifically in order to perform that next workflow step on the
ready orders. If such a query reads the same row more than once, for the same workflow step,
however, this tends to point to something broken in the process; if the order is really ready to
ship, it should ship the first time we report it for that purpose! An efficient workflow, on the
other hand, will promptly complete processing related to business events, soon placing the event
into the final, “closed” state, in which it requires no further attention from the business, except
possibly one final summary of completed work in the latest time period.

Because open events (events requiring further processing) should be recent, the open event
statuses should be selective, once a reasonable amount of history accumulates, justifying indexes
on these event-status columns. Since there are relatively few steps in most workflows, though,
there are likely to be few distinct workflow status values, so the optimizer won’t recognize the
high selectivity of the open status values unless we also generate histograms on these columns.

One special case of a workflow-status search looks specifically for unusual cases (which ideally
should not happen) where the event is both old and open. The optimizer would normally estimate
(in the absence of dynamic sampling) that the combination of an open status condition and a
condition on a range covering all old dates would only be slightly more selective (since almost
all dates stored are old) than the status condition, alone. In fact, the combination may be super-
rare, or even point to no rows at all, so an execution plan reaching both conditions early, then
following nested loops to the rest of the tables, will be best, although manual tuning might be
required to get this plan, since the optimizer won’t see the anti-correlation between these
conditions. These searches for old, open events can be useful to discover where the business
processes allow work to “slip between the cracks,” failing to be processed in a timely fashion. Of
course, the correct response to such cases is to fix the root-cause problems in the business
process, making such cases even rarer.

Conditions defining data for a single event
An example of a single-event query would read the master and detail data, for example,
pertaining to a single client visit, or to a single order. All this data was likely created at or very
close to the time of the triggering event, so it will be well-clustered around that point in time. It
is less-obvious, simply looking at the query, that the data is recent, but in the common course of
running a business, users are far more likely to trigger queries of recent events than of old ones,
so almost all of these queries will read recent data, though nothing in the WHERE clause appears
to guarantee that. The usual driving condition on such a query will be a primary-key value
(usually some arbitrary ID) pointing to a single row of the master-level event table mapping one-
to-one to the single event. From this ID, we can follow indexed foreign keys into any necessary
detail tables, using nested loops, for a very fast execution plan.

COLLABORATE 08 Copyright ©2008 by Dan Tow Page 4

“Good-citizen” queries
Queries driving from conditions that specifically tend to reach recent rows not only benefit from
the likelihood that such rows are well-cached, they tend to reinforce the useful tendency to hold
recent rows in cache, acting as “good citizens,” in a sense, in the community of queries. On the
other hand, queries that drive to event-type tables using conditions that apply equally to old and
new events (such as a condition specifying a Region_ID) bring old rows into the cache that are
unlikely to be useful to any other queries, tending to flush the more-useful recent rows from the
cache. Thus, such queries not only run long, since they find poor caching, they harm the
performance of other, better-tuned queries that reach recent rows more directly.

Exceptions: good reasons to read old data, rarely
There are a few good reasons to read old data:

• Looking for new ways that workflow items are “slipping between the cracks,” staying in
the workflow longer than the processes should allow. (This applies only to moderately
old data, ideally, because the old ways for workflow items to slip between the cracks
should already have been fixed.)

• Reorganizing the database schema for a new version of the application.
• Data-mining old data in new ways that were not formerly tried, to gain new insights. (For

example: “Maybe we could predict… if we looked at the old trend for … in a new way.”)
• Handling rare business exceptions, such as lawsuits, or unusual customer problems.
• Handling repetitive business, such as automated annual renewals (but this would only be

moderately old data). Note, however, that this category of query will still tend to reach a
narrow date range, although the narrow date range might be from a year ago and a year
plus one day ago, for a daily process performing annual renewals, for example.

Conclusions and summary
There are two primary principles that guide the use of the time dimension in event-type data
when tuning SQL:

• Queries should rarely return rows relating to old events.
• Queries should not even touch old-event data early in the execution plan, even if that data

is discarded later in the plan, with rare exceptions.

From these guiding principles we can conclude several specific, useful rules:

• The index used to reach the first event-related table in the join order should use some
column condition correlating to recent rows (potentially combined with conditions
unrelated to time, if a multi-column index applies).

• The rest of the event-related tables should be reached, usually, with nested loops to join
keys, reaching related recent master and detail data for the same global recent events.

• Time-correlated conditions pointing to recent rows see far better clustering and caching
than non-time-correlated conditions with similar selectivity, so drive to recent rows first,
then filter on non-time-dependent conditions, unless the non-time-dependent conditions
are much more selective.

• Nested-loops joins between master and detail event-type heap tables tend to join recent
rows to recent rows, and see much better caching on the joined-to table and index blocks
than the optimizer anticipates.

COLLABORATE 08 Copyright ©2008 by Dan Tow Page 5

COLLABORATE 08 Copyright ©2008 by Dan Tow Page 6

• Nested loops are usually faster than they look, and faster than the optimizer estimates.
• Queries repeatedly returning the same old event-type rows show application design flaws

(such as reports of unimportant data) or business-process design flaws (such as workflow
items getting “stuck” in a process loop that fails to resolve), or both.

• Queries touching old event data early in the execution plan, then discarding it later in the
plan, tend to indicate poor join orders, or poor join methods (hash joins that should be
nested-loops joins, especially), or non-robust plans (plans that are only OK because the
tables have not grown to mature size), or poor indexes.

• Good application design and good process design do not rewrite history, and do not re-
summarize the same history repeatedly.

• Purging old data should have almost no effect on day-to-day performance if the
application is well-designed and the query execution plans are well-tuned and robust.
(Purging can save disk and make backups, recoveries, conversions, and other DBA tasks
easier and faster, though.)

• Although purging old data should have almost no effect on day-to-day performance if the
application is well-designed and the query execution plans are well-tuned and robust,
correctly designed applications and processes should almost never touch old data, making
such purges relatively safe and easy.

• A “read trigger” would be a useful innovation, here – “Notify me if, contrary to
expectations, anyone ever reads these rows…” Such a trigger could discover failures to
follow the recent-rows principles, and these failures would in turn point to opportunities
for improvement in the application design, business-processes design, schema design,
and specific poorly-tuned SQL.

• The natural data layout of simple heap tables is ideal for event-type tables, naturally
clustering hot, recent rows together at the top – don’t mess with this useful natural result!
(Rebuilding heap tables with parallel threads is one way to shuffle recent rows in among
old rows, with disastrous results to caching and performance!)

	Introduction
	Data types
	Natural heap tables, with natural clustering of recent rows
	An analogy between good paper-based business processes, good event-based workflow processes, and good data-based applications
	Types of Conditions
	Subset conditions unrelated to time
	Conditions explicitly restricting a date range for the events
	Conditions on events’ workflow status
	Conditions defining data for a single event

	“Good-citizen” queries
	Exceptions: good reasons to read old data, rarely
	Conclusions and summary

