
OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 1 of 20

All Rights Reserved.

Repeatable, Reliable – FNDLOAD

Susan Behn, Solution Beacon, LLC

Gerald Jones, Solution Beacon, LLC

Introduction

Migration of setups and data between instances falls into two basic business needs. The first business
need is to easily migrate data and setups during the implementation process between development, the
various testing instances and ultimately production. In this case, typically all data including setup data and
non transactional application data such as suppliers, bank accounts, inventory organizations, chart of
accounts, calendars, etc… needs to be easily migrated. The second need is on-going change
management. On-going change management is typically limited to setup data and often involves
technical components such as concurrent program definitions for custom reports and extensions,
personalizations, new printers, new menus, etc… Different tools are more efficient for each of these two
basic needs. In this paper, we will focus on the change management component for which FNDLOAD is a
good migration option.

Overview of FNDLOAD

FNDLOAD is a developer tool provided by Oracle that migrates data between Oracle Application
instances. It is executed at the UNIX command line or via unix scripts created by the developer. Oracle
provides configuration files for AOL setup data, HR setups and AME. These configuration files define the
parent and child entities to be downloaded and uploaded. This “out of the box” standard functionality
ensures a reliable, repeatable process to migrate setup data between instances.

The download process creates text based data files that are transferable to any Oracle Applications
instance. As long as there are no table changes between the release levels, it is not critical for the source
and target instance to be at the exact same patch level in most cases. Data preservation options to be
discussed later in this paper will protect the target data from inappropriate update based on the owner
and/or last update date. This makes FNDLOAD ideal as a change management tool.

Other Migration Alternatives

The most often utilized alternative sadly is manual entry. This option clearly results in data entry errors,
differences between instances and is the time consuming. No one types the same thing twice the same
way every time. There is significant frustration when a setup is implemented in production with a deviation
from the source instance causing a different behavior than what was tested in other environments. Any of
the other alternatives are preferred over manual entry.

Several third party applications are available to move setup and application data between instances.
These typically include audit features as well. While these options are often clearly the Cadillac of
migration options, they tend to be expensive and require training and maintenance. For those businesses
with significant security and audit requirements, some of these applications are worth considering. For
this discussion, we will not venture into the many third party options available.

iSetup is the nearest Oracle provided alternative to FNDLOAD that will meet some of the needs for
change management. iSetup is ideal during implementations and is a front end functional tool. iSetup
additionally has the advantage of being able to migrate application data where FNDLOAD is only for
setup data. However, several significant limitations are a factor in the change management process.
iSetup does not consider the owner or timestamp in order to preserve the seeded data or most recent
version of data. iSetup migrates data only in the primary language. There are no multi-language
capabilities. More significantly for change management, iSetup has limited ability to migrate specific
objects. In some cases, filters are available to migrate individual setups such as a single concurrent

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 2 of 20

All Rights Reserved.

program, but in many cases, it’s all or nothing. The source and target instance must be at the same patch
level for iSetup. iSetup is not an option during the upgrade process even for a point release upgrade.
Finally, iSetup will not migrate Approvals Management entities.

What can be Migrated Between Instances

As stated earlier, FNDLOAD is used to migrate configuration data. The chart below includes a sample of
the many of the entities that can be migrated with FNDLOAD. This is not an all inclusive list.

In contrast to FNDLOAD, the following additional items can be migrated in iSETUP.

Discrete Mfg and Distribution Setups Payroll Elements
Employees Product Foundation
Financials Operating Units Profitability Manager Setups
Financials Setups Suppliers
GL Daily Rates Transfer Pricing Setups
Organization Structure XML Publisher

Data Preservation

FNDLOAD will preserve data in the target instance based on the following rules:

1. If the OWNER equals SEED in the source instance, then records from the source instance will
never overwrite records in the target instance where the OWNER equals CUSTOM.

2. If the OWNER equals CUSTOM in the source instance, then records from the source instance will
always overwrite records in the target instance where the OWNER equals SEED.

3. If the OWNER is the same in both instances, than the record with the most recent
LAST_UPDATE_DATE will be placed or retained in the target instance

This is one of the significant differences between iSetup and FNDLOAD.

How to Migrate Data

The executable for FNDLOAD is located in $FND_TOP/bin. FNDLOAD can be executed from the
command line with the following parameters or ideally placed in a UNIX script that logs successful
uploads or downloads. The syntax of FNDLOAD is as follows:

FNDLOAD <apps/$APPS_PW> 0 Y <Mode> <Configfile> <target data file> <entity> <parameter>

– 0 Y = Concurrent Program Flags
– Mode = UPLOAD, UPLOAD_PARTIAL or DOWNLOAD
– Configfile = Configuration file (.lct) provided by Oracle in $FND_TOP/patch/115/import

Request Groups, Request Sets User Responsibilities
Profile Options Printer Definitions
Key and Descriptive Flexfields FND Dictionary
Menus and Responsibilities Help Configuration
Forms and Form Functions Document Sequences
Attachments Concurrent Manager Schedules
Messages Forms Personalizations

Value Sets and Values
Approvals Management Objects
 ***Not available in iSetup

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 3 of 20

All Rights Reserved.

– Target Data File = Name of the file (.ldt) to be created by Download or used by Upload.
This file contains the definition of the entity being migrated.

– Entity = type of object being migrated (printer style, lookup, executable,…)
– Parameter = parameter related to the entity (Which printer style, lookup, etc)

An example of a script to download concurrent programs is shown below. This script creates a download
log which will retain any errors that occur during the execution of FNDLOAD.

When downloading data, there is a choice to download all data for the entity or use the parameters
available to limit downloaded data. If all data is downloaded, the parameters can be used at the upload
stage by using the UPLOAD_PARTIAL mode. Examples are shown below.

To download a single concurrent program identified with the executable name GLIMP, use the following
command:

FNDLOAD apps/apps 0 Y DOWNLOAD $FND_TOP/patch/115/import/afcpprog.lct mydata.ldt
CONCURRENT_PROGRAM CONCURRENT_PROGRAM_NAME=‘GLIMP’

If the data is limited in the download, there is no need to limit data on the upload. To upload all data that
exists in the mydata.ldt file, use the following command:

FNDLOAD apps/apps 0 Y UPLOAD $FND_TOP/patch/115/import/afcpprog.lct mydata.ldt

To download all concurrent program data with only the limitation of the application name, use the
following command:

FNDLOAD apps/apps 0 Y DOWNLOAD $FND_TOP/patch/115/import/afcpprog.lct mydata.ldt
APPLICATION_NAME=‘FND’

#!/bin/ksh

#***

cpgm_file_name=$1

source password file

. $APPL_TOP/.applenv

apps_db_passwd=$APPS_PASS

#app_short_name=SLCUST1

log_file=$PWD/FNDLOAD.$cpgm_file_name.download.log

fndload_file=FNDLOAD_$cpgm_file_name.ldt

echo 'Downloading Concurrent Program Details for Concurrent Program Short Name' $cpgm_file_name 'to

file' $PWD/FNDLOAD_$cpgm_file_name.ldt >> $log_file

FNDLOAD apps/$apps_db_passwd O Y DOWNLOAD $FND_TOP/patch/115/import/afcpprog.lct $fndload_file PROGRAM

APPLICATION_SHORT_NAME="XXSB" CONCURRENT_PROGRAM_NAME=$cpgm_file_name 2>/dev/null

grep "DEFINE PROGRAM" $fndload_file >> $log_file

if [$? != 0] ; then

 echo FNDLOAD of Concurrent Program for concurrent program short name $cpgm_file_name was not

successful >> $log_file

 exit 1

else

 echo FNDLOAD of Concurrent Program for concurrent program short name $cpgm_file_name was successful

>> $log_file

fi;

exit 0

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 4 of 20

All Rights Reserved.

In this case, you may want to only migrate some of the concurrent programs to the target instance. Use
UPLOAD_PARTIAL mode as shown the following command to upload only some of the data that exists in
the mydata.ldt file:

FNDLOAD apps/apps 0 Y UPLOAD_PARTIAL $FND_TOP/patch/115/import/afcpprog.lct
mydata.ldt CONCURRENT_PROGRAM CONCURRENT_PROGRAM_NAME=‘GLIMP’

Configuration Files

Configurations files are provided by Oracle for AOL, HR and AME entities. AOL configuration files are
located in $FND_TOP/patch/115/import. HR and AME configuration files are located in
$PER_TOP/patch/115/import in Release 11i. In release 12, the AME configuration files have moved to
$AME_TOP/patch/12/import. These configuration files have four main sections. The comments at the
beginning of the configuration files often identify the parent and child entities included in the load process
as well as parameters available to limit the data. However, the comments are not always consistent.
Fortunately, the other sections are fairly intuitive and you should have no problem identifying the entities
or the parameters. The Define Block section specifies the structure of the entities to be migrated. It
defines key attributes, base attributes, trans (translation) attributes, CTX (context) attributes and child
entities. The Download Block includes the SQL statements to download the entities. Look for the bind
variables to identify available parameters. The Upload Block is a SQL statement or anonymous PL/SQL
block to upload the data to the target instance. Appendix A in this document shows a marked up example
of the configuration file for forms personalizations highlighting the various sections and key components.

Approvals Management (AME) Examples

The process for FNDLOAD is the same for all entities as shown in the earlier example for concurrent
programs. The only difference is the parameters and the name of the configuration file. Since Approvals
Management (AME) is new and documentation is limited, we have chosen to provide the detailed
examples for these entities. The FNDLOAD commands for AME were recently tested in an 11.5.10.2
vision database and appear to function correctly as designed; however, we encourage extensive testing
particularly for these entities since they were recently added.

The following AME setup components can be migrated with FNDLOAD:

Transaction Types
Approver Types
Item Classes
Attributes
Conditions
Action Type Configurations
Approver Groups
Rules

The following lists the commands necessary to download the setup data from the database into a flat file.
Subsequently listed are the commands necessary to upload the data from the flat file to the database.
Also included are notes about effective use of the commands or setup recommendations.

Transaction Types (Calling Apps)

Download

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 5 of 20

All Rights Reserved.

FNDLOAD apps/<apps pwd> 0 Y DOWNLOAD amescvar.lct <download file name>.ldt

AME_CALLING_APPS APPLICATION_SHORT_NAME=<FND application short name>

TRANSACTION_TYPE_ID=<AME transaction type short name>

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amescvar.lct sbtrantype.ldt

AME_CALLING_APPS APPLICATION_SHORT_NAME=SQLAP

TRANSACTION_TYPE_ID=SBTRANSTYPE

Upload

FNDLOAD apps/<apps pwd> 0 Y UPLOAD amescvar.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amescvar.lct sbtrantype.ldt.ldt

Attributes

Download of attributes requires two different scripts to be executed. One script downloads the attribute
structure itself and the other downloads the data contained in the value field of the attribute. For example
the SQL query in a dynamic attribute field. Both scripts allow you to download all of the current attributes
for a give AME transaction type. Additionally you can download a single attribute or multiple attributes
using a pattern string (e.g. SB%). It is recommended that if you are creating attributes for an existing
transaction type, name any new or custom attributes starting with the same prefix. This will allow for them
to be singled out and downloaded as a group at migration time. If creating a new transaction type,
download of all attributes using only the application short name and transaction type parameters.

Download

Attributes

FNDLOAD apps/<apps pwd> 0 Y DOWNLOAD amesmatt.lct <download file name>.ldt

AME_ATTRIBUTES APPLICATION_SHORT_NAME=<FND application short name>

TRANSACTION_TYPE_ID=<AME transaction type short name>

[ATTRIBUTE_NAME=<attribute_name>]

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesmatt.lct sbattributes.ldt

AME_ATTRIBUTES APPLICATION_SHORT_NAME=SQLAP

TRANSACTION_TYPE_ID= SBTRANSTYPE

ATTRIBUTE_NAME=SB_CUST_ATTRIBUTE

Attribute Usages

FNDLOAD apps/<apps pwd> 0 Y DOWNLOAD amesmatr.lct <download file name>.ldt

AME_ATTRIBUTE_USAGES APPLICATION_SHORT_NAME=<FND application short

name> TRANSACTION_TYPE_ID=<AME transaction type short name>

[ATTRIBUTE_NAME=<attribute_name>]

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesmatr.lct sbattribute_usages.ldt

AME_ATTRIBUTE_USAGES APPLICATION_SHORT_NAME=SQLAP

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 6 of 20

All Rights Reserved.

TRANSACTION_TYPE_ID=SBTRANSTYPE

ATTRIBUTE_NAME=SB_CUST_ATTRIBUTE

Upload

Attributes

FNDLOAD apps/<apps pwd> 0 Y UPLOAD amesmatt.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesmatt.lct sbattributes.ldt

Attribute Usages

FNDLOAD apps/<apps pwd> 0 Y UPLOAD amesmatr.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesmatr.lct sbattribute_usages.ldt

Conditions

The script that downloads AME conditions allows you to download all conditions for a given transaction
type or only those associated with a particular attribute or group of attributes. As mentioned in the
attributes section, it is recommended that if you are creating conditions on attributes for an existing
transaction type, name any new or custom attributes starting with the same prefix. This will allow for the
associated conditions to be singled out and downloaded as a group at migration time. If creating a new
transaction type, download of all conditions using only the application short name and transaction type
parameters.

Download

FNDLOAD apps/<apps pwd> 0 Y DOWNLOAD amesconk.lct <download file name>.ldt

AME_CONDITIONS APPLICATION_SHORT_NAME=<FND application short name>

TRANSACTION_TYPE_ID=<AME transaction type short name>

[ATTRIBUTE_NAME=<attribute_name>]

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesconk.lct sbconditions.ldt

AME_CONDITIONS APPLICATION_SHORT_NAME=SQLAP

TRANSACTION_TYPE_ID=SBTRANSTYPE

Upload

FNDLOAD apps/<apps pwd> 0 Y UPLOAD amesconk.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesconk.lct sbconditions.ldt

Approval Groups

There are two scripts that are required to be executed to migrate custom approver groups. One script
downloads the structure of the approver group including the SQL query used to select members for any

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 7 of 20

All Rights Reserved.

dynamic queries. The other script downloads data regarding the order number and voting regime of the
approver group. There are several notes of interest regarding downloading of approver groups.

� The download script only works for dynamic approver groups. It does not work for static approver

groups.
� The script does not readily recognize approver group names containing spaces. If the approver

group(s) contains spaces, add the % wildcard symbol in between each word of the approver group to
ensure it is downloaded properly

� The primary approver group script does not allow for downloading all approver groups for a given
transaction type. You must supply the name of an approver group or some matching pattern of
multiple groups if the naming convention of the groups is similar.

� To add to the previous point, it is recommended that in order to be able to download multiple
approver groups at one time (instead of having to create multiple download files), use a common
prefix when naming the approver group. For example, use <application short name>_cust as the
prefix for approver group such as AP cust (name of the approver group).

� The approver group configuration script does allow all approver group configuration for a given
transaction type to be downloaded at one time.

Download

Approval Group

FNDLOAD apps/<apps pw> 0 Y DOWNLOAD amesappg.lct <download file name>.ldt

AME_APPROVAL_GROUPS APPROVAL_GROUP_NAME=<Approval Group Name>

#Need to use wildcards if Approval Group name has spaces

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesappg.lct sbappgrps.ldt

AME_APPROVAL_GROUPS APPROVAL_GROUP_NAME=SB%Cust%Grp%

Approval Group Configuration

FNDLOAD apps/<apps pw> 0 Y DOWNLOAD amesaagc.lct <download file name>.ldt

AME_APPROVAL_GROUP_CONFIG APPLICATION_SHORT_NAME=<FND application

short name> TRANSACTION_TYPE_ID=<AME transaction type short name>

[APPROVAL_GROUP_NAME=<Approval Group Name>]

#Need to use wildcards if Approval Group name has spaces

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesaagc.lct sbappgrpscon.ldt

AME_APPROVAL_GROUP_CONFIG APPLICATION_SHORT_NAME=SQLAP

TRANSACTION_TYPE_ID=SBTRANSTYPE

APPROVAL_GROUP_NAME=SB%Cust%Grp%

Upload

Approval Group

FNDLOAD apps/<apps pw> 0 Y UPLOAD amesappg.lct <download file name>.ldt

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 8 of 20

All Rights Reserved.

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesappg.lct sbappgrps.ldt.ldt

Approval Group Configuration

FNDLOAD apps/<apps pw> 0 Y UPLOAD amesaagc.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesaagc.lct sbappgrpscon.ldt

Action Type Configurations

Action Type configurations refers to the download of action types that have been enabled for a given
transaction type. In other words, you can migrate the action types that have been enabled and configured
for a transaction type from one instance to another. The download does allow all configurations for a
given transaction type to be downloaded at one type using the application short name and transaction
type parameters of the script. You can also download by specific action type or a group of action types
using a specific string pattern to match against.

Download

FNDLOAD apps/<apps pw> 0 Y DOWNLOAD amesaatc.lct <download file name>.ldt

AME_ACTION_TYPE_CONFIG APPLICATION_SHORT_NAME=<FND application short

name> TRANSACTION_TYPE_ID=<AME transaction type short name>

[ACTION_TYPE_NAME=<action type name>]

 #Need to use wildcards if Action Type name has spaces

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesaatc.lct sbacttconf.ldt

AME_ACTION_TYPE_CONFIG APPLICATION_SHORT_NAME=SQLAP

TRANSACTION_TYPE_ID=SBTRANSTYPE

Upload

FNDLOAD apps/<apps pw> 0 Y UPLOAD amesaatc.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesaatc.lct sbacttconf.ldt

Rules

The download of AME rules requires two scripts to be executed. The first script downloads information
about the rule (e.g. name, description, etc) along with associated conditions and rule type. The second
script downloads all associated actions for the rule. Both scripts allow all rules for a given transaction type
to be downloaded. You can also download a specific rule. However, unlike some of the previous
components, you cannot download a group of rules using a string wildcards. The reason for this is that
the FNDLOAD scripts use the Oracle generated rule key as a parameter to download a specific rule. It is
recommended to download all rules for a transaction type unless only a handful of new rules have been
created and need to be migrated.

Download

Rules

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 9 of 20

All Rights Reserved.

FNDLOAD apps/<apps pw> 0 Y DOWNLOAD amesrulk.lct <download file name>.ldt

AME_RULES APPLICATION_SHORT_NAME=<FND application short name>

TRANSACTION_TYPE_ID=<AME transaction type short name> [RULE_KEY=<Rule Key>]

Rule Key is found in AME_RULES table

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesrulk.lct sbrules.ldt AME_RULES

APPLICATION_SHORT_NAME=SQLAP TRANSACTION_TYPE_ID=SBTRANSTYPE

Rule Actions

FNDLOAD apps/<apps pw> 0 Y DOWNLOAD amesactu.lct <download file name>.ldt

AME_ACTION_USAGES APPLICATION_SHORT_NAME=<FND application short name>

TRANSACTION_TYPE_ID=<AME transaction type short name> [RULE_KEY=<Rule Key>]

Rule Key is found in AME_RULES table

Ex. FNDLOAD apps/apps 0 Y DOWNLOAD amesactu.lct sbrulesact.ldt

AME_ACTION_USAGES APPLICATION_SHORT_NAME=SQLAP

TRANSACTION_TYPE_ID=SBTRANSTYPE

Upload

Rules

FNDLOAD apps/<apps pw> 0 Y UPLOAD amesrulk.lct <download file name>.ldt

Ex. FNDLOAD apps/apps 0 Y UPLOAD amesrulk.lct sbrules.ldt

Rule Actions

FNDLOAD apps/<apps pw> 0 Y UPLOAD amesactu.lct <download file name>.ldt

FNDLOAD apps/apps 0 Y UPLOAD amesactu.lct sbrulesact.ldt

Migration Issues

FNDLOAD does not always accommodate the deletion of rows. For example, FNDLOAD will not delete
stages or programs from request sets when uploading. However, FNDLOAD will delete parameters in a
concurrent program definition. Check the configuration file to see if any data is deleted as part of the
upload process. It may be necessary to create a custom configuration file if this is a problem, but keep in
mind that Oracle does not support custom configuration files.

Another issue, particularly with the AME configuration scripts has to do with updates to existing data. For
example, AME scripts work well when downloading and migrating setup data to another instance that
does not currently contain an instance of the data (e.g. attribute). However, if existing data is updated in
the source instance and subsequently downloaded using FNDLOAD and uploaded again to the same
instance, the scripts do not update existing setup components well, if at all.

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 10 of 20

All Rights Reserved.

XDO Loader

Although this is out of scope for this particular white paper, it is worth mentioning that XDOLoader is a
java-based utility to load template files for XML publisher similar to FNDLOAD. Refer to MetaLink
Document Id: 469585.1 for details on how to use XDOLoader.

Conclusion

It was the intent of this paper to provide an overview of FNDLOAD to encourage the reader to use
automated tools to migrate setups and configuration data over manual methods. FNDLOAD is certainly
not the only option. Consider the pros and cons of FNDLOAD verses iSETUP as well as other automated
options to streamline this process.

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 11 of 20

All Rights Reserved.

APPENDIX A

$Header: affrmcus.lct 115.8 2007/01/22 20:38:23 dbowles noship $

affrmcus - FND Forms Customizations Loader Configuration

Entities -

FND_FORM_CUSTOM_RULES

FND_FORM_CUSTOM_ACTIONS

FND_FORM_CUSTOM_PARAMS

FND_FORM_CUSTOM_SCOPES

Note: to change the language you are downloading, setenv NLS_LANG before

running the loader.

COMMENT = "dbdrv: exec fnd bin FNDLOAD bin &phase=daa+70

checkfile:~PROD:~PATH:~FILE &ui_apps 0 Y UPLOAD

@FND:patch/115/import/affrmcus.lct @~PROD:~PATH/~FILE"

Parameters -

(1) FUNCTION_NAME=VALUE (WHILE DOWNLOAD ONLY)

(2) FORM_NAME=VALUE (WHILE DOWNLOAD ONLY)

download example. Note if no parameters are passed, all rows downloaded

FNDLOAD apps/apps 0 Y DOWNLOAD affrmcus.lct my.ldt FND_FORM_CUSTOM_RULES

function_name=FND_FNDSCAUS

upload example

FNDLOAD apps/apps 0 Y UPLOAD affrmcus.lct my.ldt

Note: Any existing data for a function being uploaded is deleted before

uploading occurs. No data

is updated.

DEFINE FND_FORM_CUSTOM_RULES

 KEY ID VARCHAR2(50)

 BASE FUNCTION_NAME VARCHAR2(30)

 BASE DESCRIPTION VARCHAR2(255)

 BASE TRIGGER_EVENT VARCHAR2(30)

 BASE TRIGGER_OBJECT VARCHAR2(100)

 BASE CONDITION VARCHAR2(2000)

 BASE SEQUENCE VARCHAR2(50)

 BASE CREATED_BY VARCHAR2(50)

 BASE CREATION_DATE VARCHAR2(11)

 BASE OWNER VARCHAR2(4000)

 BASE LAST_UPDATE_DATE VARCHAR2(11)

 BASE LAST_UPDATE_LOGIN VARCHAR2(50)

 BASE ENABLED VARCHAR2(1)

 BASE FIRE_IN_ENTER_QUERY VARCHAR2(1)

 BASE RULE_KEY VARCHAR2(30)

 BASE FORM_NAME VARCHAR2(30)

 BASE RULE_TYPE VARCHAR2(1)

 DEFINE FND_FORM_CUSTOM_ACTIONS

 KEY ACTION_ID VARCHAR2(50)

 BASE SEQUENCE VARCHAR2(50)

 TRANS PROPERTY_VALUE VARCHAR2(4000)

 BASE ARGUMENT_TYPE VARCHAR2(1)

 BASE CREATED_BY VARCHAR2(50)

 BASE CREATION_DATE VARCHAR2(11)

Also search for
“DEFINE” to find
Entities

Look in comments
for parameters

Look in comments
for entities

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 12 of 20

All Rights Reserved.

 BASE OWNER VARCHAR2(4000)

 BASE LAST_UPDATE_DATE VARCHAR2(11)

 BASE LAST_UPDATE_LOGIN VARCHAR2(50)

 BASE TARGET_OBJECT VARCHAR2(100)

 BASE ACTION_TYPE VARCHAR2(1)

 BASE ENABLED VARCHAR2(1)

 BASE OBJECT_TYPE VARCHAR2(30)

 BASE FOLDER_PROMPT_BLOCK VARCHAR2(30)

 BASE MESSAGE_TYPE VARCHAR2(1)

 TRANS MESSAGE_TEXT VARCHAR2(4000)

 BASE SUMMARY VARCHAR2(255)

 BASE BUILTIN_TYPE VARCHAR2(1)

 BASE BUILTIN_ARGUMENTS VARCHAR2(4000)

 BASE LANGUAGE VARCHAR2(4)

 KEY RULE_ID VARCHAR2(50)

 BASE PROPERTY_NAME VARCHAR2(50)

 BASE MENU_ENTRY VARCHAR2(30)

 TRANS MENU_LABEL VARCHAR2(80)

 BASE MENU_SEPERATOR VARCHAR2(1)

 BASE MENU_ENABLED_IN VARCHAR2(255)

 BASE MENU_ACTION VARCHAR2(1)

 BASE MENU_ARGUMENT_LONG VARCHAR2(2000)

 BASE MENU_ARGUMENT_SHORT VARCHAR2(255)

 BASE REQUEST_APPLICATION_ID VARCHAR2(50)

 DEFINE FND_FORM_CUSTOM_PARAMS

 KEY ACTION_ID VARCHAR2(50)

 KEY NAME VARCHAR2(240)

 BASE VALUE VARCHAR2(4000)

 BASE SEQUENCE VARCHAR2(50)

 BASE DEFAULT_TYPE VARCHAR2(1)

 BASE INHERIT VARCHAR2(1)

 BASE LAST_UPDATE_DATE VARCHAR2(11)

 BASE OWNER VARCHAR2(4000)

 BASE CREATED_BY VARCHAR2(50)

 BASE CREATION_DATE VARCHAR2(11)

 BASE LAST_UPDATE_LOGIN VARCHAR2(50)

 END FND_FORM_CUSTOM_PARAMS

 END FND_FORM_CUSTOM_ACTIONS

 DEFINE FND_FORM_CUSTOM_SCOPES

 KEY RULE_ID VARCHAR2(50)

 KEY LEVEL_ID VARCHAR2(50)

 KEY LEVEL_VALUE VARCHAR2(4000)

 BASE LEVEL_VALUE_APPLICATION_ID VARCHAR2(50)

 BASE LAST_UPDATE_DATE VARCHAR2(11)

 BASE OWNER VARCHAR2(4000)

 BASE CREATION_DATE VARCHAR2(11)

 BASE CREATED_BY VARCHAR2(50)

 BASE LAST_UPDATE_LOGIN VARCHAR2(50)

 END FND_FORM_CUSTOM_SCOPES

END FND_FORM_CUSTOM_RULES

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 13 of 20

All Rights Reserved.

DOWNLOAD FND_FORM_CUSTOM_RULES

 "select ID,

 FUNCTION_NAME,

 DESCRIPTION,

 TRIGGER_EVENT,

 TRIGGER_OBJECT,

 CONDITION,

 SEQUENCE,

 CREATED_BY,

 to_char(CREATION_DATE, 'YYYY/MM/DD') CREATION_DATE,

 fnd_load_util.owner_name(LAST_UPDATED_BY) OWNER,

 to_char(LAST_UPDATE_DATE, 'YYYY/MM/DD') LAST_UPDATE_DATE,

 LAST_UPDATE_LOGIN,

 ENABLED,

 FIRE_IN_ENTER_QUERY,

 RULE_KEY,

 FORM_NAME,

 RULE_TYPE

 from fnd_form_custom_rules

 where CREATED_BY <> 1

 and (:FUNCTION_NAME is null or(:FUNCTION_NAME is not null and

function_name like :FUNCTION_NAME))

 and (:FORM_NAME is null or (:FORM_NAME is not null and form_name

like :FORM_NAME))

 order by FORM_NAME, FUNCTION_NAME"

DOWNLOAD FND_FORM_CUSTOM_ACTIONS

 "select ACTION_ID ACTIONS_ID,

 SEQUENCE,

 PROPERTY_VALUE,

 ARGUMENT_TYPE,

 CREATED_BY,

 to_char(CREATION_DATE, 'YYYY/MM/DD') CREATION_DATE,

 fnd_load_util.owner_name(LAST_UPDATED_BY) OWNER,

 to_char(LAST_UPDATE_DATE, 'YYYY/MM/DD') LAST_UPDATE_DATE,

 LAST_UPDATE_LOGIN,

 TARGET_OBJECT,

 ACTION_TYPE,

 ENABLED,

 OBJECT_TYPE,

 FOLDER_PROMPT_BLOCK,

 MESSAGE_TYPE,

 MESSAGE_TEXT,

 SUMMARY,

 BUILTIN_TYPE,

 BUILTIN_ARGUMENTS,

 LANGUAGE,

 RULE_ID,

 PROPERTY_NAME,

 MENU_ENTRY,

 MENU_LABEL,

 MENU_SEPERATOR,

 MENU_ENABLED_IN,

 MENU_ACTION,

Search for bind variables in
the first download section to
determine attributes
available

Search for “DOWNLOAD” to
view sql for downloaded
entities

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 14 of 20

All Rights Reserved.

 MENU_ARGUMENT_LONG,

 MENU_ARGUMENT_SHORT,

 REQUEST_APPLICATION_ID

 from fnd_form_custom_actions actions

 where actions.rule_id = :ID"

DOWNLOAD FND_FORM_CUSTOM_PARAMS

 "select ACTION_ID,

 NAME,

 VALUE,

 SEQUENCE,

 DEFAULT_TYPE,

 INHERIT,

 to_char(LAST_UPDATE_DATE, 'YYYY/MM/DD') LAST_UPDATE_DATE,

 fnd_load_util.owner_name(LAST_UPDATED_BY) OWNER,

 CREATED_BY,

 to_char(CREATION_DATE, 'YYYY/MM/DD') CREATION_DATE,

 LAST_UPDATE_LOGIN

 from fnd_form_custom_params

 where action_id = :ACTIONS_ID"

DOWNLOAD FND_FORM_CUSTOM_SCOPES

 "select rule_id,

 level_id,

 decode(level_id,

 10, to_char(level_value),

 20, to_char(level_value),

 30, (select responsibility_key

 from fnd_responsibility

 where responsibility_id = LEVEL_VALUE

 and application_id =

LEVEL_VALUE_APPLICATION_ID),

 40, fnd_load_util.owner_name(LEVEL_VALUE))

LEVEL_VALUE,

 level_value_application_id,

 to_char(LAST_UPDATE_DATE, 'YYYY/MM/DD') LAST_UPDATE_DATE,

 fnd_load_util.owner_name(LAST_UPDATED_BY) OWNER,

 to_char(CREATION_DATE, 'YYYY/MM/DD') CREATION_DATE,

 created_by,

 last_update_login

 from fnd_form_custom_scopes

 where rule_id = :ID"

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 15 of 20

All Rights Reserved.

UPLOAD FND_FORM_CUSTOM_RULES

BEGIN

 "DECLARE

 f_luby number; -- entity owner in file

 f_ludate date; -- entity update date in file

 f_creator number;

 --db_luby number; -- entity owner in db

 --db_ludate date; -- entity update date in db

 f_form_name varchar2(30);

 BEGIN

 -- we really should not ever run in NLS mode, as the lct file in not used

to deliver Oracle NLS translated ldt files

 if :UPLOAD_MODE='NLS' then

 return;

 else

 -- Translate owner to file_last_updated_by

 f_luby := fnd_load_util.owner_id(:OWNER);

 -- Translate char last_update_date to date

 f_ludate := nvl(to_date(:LAST_UPDATE_DATE, 'YYYY/MM/DD'), sysdate);

 -- Translate creator to f_creator

 f_creator := fnd_load_util.owner_id(:CREATED_BY);

 if :RULE_TYPE is NULL then

 -- Since rule id will not be consistant between systems,

 -- delete any existing records for the function_name

 -- before uploading

 FND_FORM_CUSTOM_RULES_PKG.DELETE_ROWS(:FUNCTION_NAME);

 -- we must be processing an ldt file that was created with a previous

lct version

 -- the form name will need to be extracted

 BEGIN

 select g.form_name INTO f_form_name

 from fnd_form_functions f, fnd_form g

 where f.form_id = g.form_id

 AND f.function_name = :FUNCTION_NAME;

 EXCEPTION

 WHEN OTHERS THEN

 f_form_name := :FUNCTION_NAME;

 END;

 insert into FND_FORM_CUSTOM_RULES(

 ID,

 FUNCTION_NAME,

 DESCRIPTION,

 TRIGGER_EVENT,

 TRIGGER_OBJECT,

 CONDITION,

 SEQUENCE,

 CREATED_BY,

 CREATION_DATE,

 LAST_UPDATED_BY,

 LAST_UPDATE_DATE,

 LAST_UPDATE_LOGIN,

 ENABLED,

 FIRE_IN_ENTER_QUERY,

Search for “UPLOAD” to
view sql for uploaded
entities

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 16 of 20

All Rights Reserved.

 RULE_KEY,

 FORM_NAME,

 RULE_TYPE)

 values(

 FND_FORM_CUSTOM_RULES_S.NextVal,

 :FUNCTION_NAME,

 :DESCRIPTION,

 :TRIGGER_EVENT,

 :TRIGGER_OBJECT,

 :CONDITION,

 :SEQUENCE,

 f_luby,

 f_ludate,

 f_luby,

 f_ludate,

 0,

 :ENABLED,

 :FIRE_IN_ENTER_QUERY,

 NULL,

 f_form_name,

 'A');

 else

 if :RULE_TYPE = 'A' then

 FND_FORM_CUSTOM_RULES_PKG.DELETE_ROWS(:FUNCTION_NAME);

 elsif :RULE_TYPE = 'F' then

 FND_FORM_CUSTOM_RULES_PKG.DELETE_FORM_ROWS(:FORM_NAME);

 end if;

 insert into FND_FORM_CUSTOM_RULES(

 ID,

 FUNCTION_NAME,

 DESCRIPTION,

 TRIGGER_EVENT,

 TRIGGER_OBJECT,

 CONDITION,

 SEQUENCE,

 CREATED_BY,

 CREATION_DATE,

 LAST_UPDATED_BY,

 LAST_UPDATE_DATE,

 LAST_UPDATE_LOGIN,

 ENABLED,

 FIRE_IN_ENTER_QUERY,

 RULE_KEY,

 FORM_NAME,

 RULE_TYPE)

 values(

 FND_FORM_CUSTOM_RULES_S.NextVal,

 :FUNCTION_NAME,

 :DESCRIPTION,

 :TRIGGER_EVENT,

 :TRIGGER_OBJECT,

 :CONDITION,

 :SEQUENCE,

 f_luby,

 f_ludate,

 f_luby,

 f_ludate,

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 17 of 20

All Rights Reserved.

 0,

 :ENABLED,

 :FIRE_IN_ENTER_QUERY,

 :RULE_KEY,

 :FORM_NAME,

 :RULE_TYPE);

 end if;

 end if;

 END; "

UPLOAD FND_FORM_CUSTOM_ACTIONS

BEGIN

 "DECLARE

 f_luby number; -- entity owner in file

 f_ludate date; -- entity update date in file

 f_creator number;

 --db_luby number; -- entity owner in db

 --db_ludate date; -- entity update date in db

 BEGIN

 -- we really should not ever run in NLS mode, as the lct file in not used

to deliver Oracle NLS translated ldt files

 if :UPLOAD_MODE='NLS' then

 return;

 else

 -- Translate owner to file_last_updated_by

 f_luby := fnd_load_util.owner_id(:OWNER);

 -- Translate char last_update_date to date

 f_ludate := nvl(to_date(:LAST_UPDATE_DATE, 'YYYY/MM/DD'), sysdate);

 -- Translate creator to f_creator

 f_creator := fnd_load_util.owner_id(:CREATED_BY);

 insert into FND_FORM_CUSTOM_ACTIONS(

 SEQUENCE,

 PROPERTY_VALUE,

 ARGUMENT_TYPE,

 CREATED_BY,

 CREATION_DATE,

 LAST_UPDATED_BY,

 LAST_UPDATE_DATE,

 LAST_UPDATE_LOGIN,

 TARGET_OBJECT,

 ACTION_TYPE,

 ENABLED,

 OBJECT_TYPE,

 FOLDER_PROMPT_BLOCK,

 MESSAGE_TYPE,

 MESSAGE_TEXT,

 SUMMARY,

 BUILTIN_TYPE,

 BUILTIN_ARGUMENTS,

 LANGUAGE,

 RULE_ID,

 PROPERTY_NAME,

 MENU_ENTRY,

 MENU_LABEL,

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 18 of 20

All Rights Reserved.

 MENU_SEPERATOR,

 MENU_ENABLED_IN,

 MENU_ACTION,

 MENU_ARGUMENT_LONG,

 MENU_ARGUMENT_SHORT,

 ACTION_ID,

 REQUEST_APPLICATION_ID)

 values(

 :SEQUENCE,

 :PROPERTY_VALUE,

 :ARGUMENT_TYPE,

 f_luby,

 f_ludate,

 f_luby,

 f_ludate,

 0,

 :TARGET_OBJECT,

 :ACTION_TYPE,

 :ENABLED,

 :OBJECT_TYPE,

 :FOLDER_PROMPT_BLOCK,

 :MESSAGE_TYPE,

 :MESSAGE_TEXT,

 :SUMMARY,

 :BUILTIN_TYPE,

 :BUILTIN_ARGUMENTS,

 :LANGUAGE,

 FND_FORM_CUSTOM_RULES_S.CurrVal,

 :PROPERTY_NAME,

 :MENU_ENTRY,

 :MENU_LABEL,

 :MENU_SEPERATOR,

 :MENU_ENABLED_IN,

 :MENU_ACTION,

 :MENU_ARGUMENT_LONG,

 :MENU_ARGUMENT_SHORT,

 FND_FORM_CUSTOM_ACTIONS_S.NextVal,

 :REQUEST_APPLICATION_ID);

 end if;

 END;"

UPLOAD FND_FORM_CUSTOM_PARAMS

 "DECLARE

 f_luby number; -- entity owner in file

 f_ludate date; -- entity update date in file

 f_creator number;

 --db_luby number; -- entity owner in db

 --db_ludate date; -- entity update date in db

 BEGIN

 -- we really should not ever run in NLS mode, as the lct file in not used

to deliver Oracle NLS translated ldt files

 if :UPLOAD_MODE='NLS' then

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 19 of 20

All Rights Reserved.

 return;

 else

 -- Translate owner to file_last_updated_by

 f_luby := fnd_load_util.owner_id(:OWNER);

 -- Translate char last_update_date to date

 f_ludate := nvl(to_date(:LAST_UPDATE_DATE, 'YYYY/MM/DD'), sysdate);

 -- Translate creator to f_creator

 f_creator := fnd_load_util.owner_id(:CREATED_BY);

 insert into FND_FORM_CUSTOM_PARAMS(

 ACTION_ID,

 NAME,

 VALUE,

 SEQUENCE,

 DEFAULT_TYPE,

 INHERIT,

 LAST_UPDATED_BY,

 LAST_UPDATE_DATE,

 CREATED_BY,

 CREATION_DATE,

 LAST_UPDATE_LOGIN)

 values(

 FND_FORM_CUSTOM_ACTIONS_S.CurrVal,

 :NAME,

 :VALUE,

 :SEQUENCE,

 :DEFAULT_TYPE,

 :INHERIT,

 f_luby,

 f_ludate,

 f_luby,

 f_ludate,

 0);

 end if;

 END;"

UPLOAD FND_FORM_CUSTOM_SCOPES

 "DECLARE

 f_luby number; -- entity owner in file

 f_ludate date; -- entity update date in file

 f_creator number;

 v_level_value number;

 --db_luby number; -- entity owner in db

 --db_ludate date; -- entity update date in db

 BEGIN

 -- we really should not ever run in NLS mode, as the lct file in not used

to deliver Oracle NLS translated ldt files

 if :UPLOAD_MODE='NLS' then

 return;

 else

 -- Translate owner to file_last_updated_by

 f_luby := fnd_load_util.owner_id(:LAST_UPDATED_BY);

 -- Translate char last_update_date to date

 f_ludate := nvl(to_date(:LAST_UPDATE_DATE, 'YYYY/MM/DD'), sysdate);

 -- Translate creator to f_creator

 f_creator := fnd_load_util.owner_id(:CREATED_BY);

OAUG Forum at COLLABORATE 08 Copyright ©2008 Solution Beacon, LLC Page 20 of 20

All Rights Reserved.

 if :LEVEL_ID = 30 then

 begin

 select responsibility_id INTO v_level_value

 from fnd_responsibility

 where responsibility_key = :LEVEL_VALUE

 and application_id = :LEVEL_VALUE_APPLICATION_ID;

 exception

 when NO_DATA_FOUND then

 v_level_value := NULL;

 end;

 elsif :LEVEL_ID = 40 then

 v_level_value := fnd_load_util.owner_id(:LEVEL_VALUE);

 else

 v_level_value := :LEVEL_VALUE;

 end if;

 insert into FND_FORM_CUSTOM_SCOPES(

 RULE_ID,

 LEVEL_ID,

 LEVEL_VALUE,

 LEVEL_VALUE_APPLICATION_ID,

 LAST_UPDATED_BY,

 LAST_UPDATE_DATE,

 CREATED_BY,

 CREATION_DATE,

 LAST_UPDATE_LOGIN)

 values(

 FND_FORM_CUSTOM_RULES_S.CurrVal,

 :LEVEL_ID,

 v_level_value,

 :LEVEL_VALUE_APPLICATION_ID,

 f_luby,

 f_ludate,

 f_luby,

 f_ludate,

 0);

 end if;

 END;"

